Renormalisation of non-differentiable potentials

被引:0
|
作者
Alexandre, J. [1 ]
Defenu, N. [2 ]
Grigolia, G. [3 ,4 ]
Marian, I. G. [3 ,5 ,6 ]
Mdinaradze, D. [3 ]
Trombettoni, A. [7 ,8 ]
Turovtsi-Shiutev, Y. [9 ]
Nandori, I [3 ,5 ,6 ]
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
[2] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
[3] Univ Debrecen, POB 105, H-4010 Debrecen, Hungary
[4] Univ Trento, Dept Phys, Via Sommar 14, I-38123 Povo, Trento, Italy
[5] Atomki, POB 51, H-4001 Debrecen, Hungary
[6] MTA DE Particle Phys Res Grp, POB 51, H-4001 Debrecen, Hungary
[7] Univ Trieste, Dept Phys, Str Costiera 11, I-34151 Trieste, Italy
[8] CNR IOM DEMOCRITOS Simulat Ctr, Via Bonomea 265, I-34136 Trieste, Italy
[9] Uzhgorod Natl Univ, 14 Univ Str, UA-88000 Uzhgorod, Ukraine
关键词
Renormalization and Regularization; Renormalization Group; Field Theories in Higher Dimensions; Large Extra Dimensions; GOLDSTONE BOSONS; AVERAGE ACTION; EQUATION;
D O I
10.1007/JHEP07(2022)012
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Non-differentiable potentials, such as the V-shaped (linear) potential, appear in various areas of physics. For example, the effective action for branons in the framework of the brane world scenario contains a Liouville-type interaction, i.e., an exponential of the V-shaped function. Another example is coming from particle physics when the standard model Higgs potential is replaced by a periodic self-interaction of an N-component scalar field which depends on the length, thus it is O(N) symmetric. We first compare classical and quantum dynamics near non-analytic points and discuss in this context the role of quantum fluctuations. We then study the renormalisation of such potentials, focusing on the Exact Wilsonian Renormalisation approach, and we discuss how quantum fluctuations smoothen the bare singularity of the potential. Applications of these results to the non-differentiable effective branon potential and to the O(N) models when the spatial dimension is varied and to the O(N) extension of the sine-Gordon model in (1+1) dimensions are presented.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Renormalisation of non-differentiable potentials
    J. Alexandre
    N. Defenu
    G. Grigolia
    I. G. Márián
    D. Mdinaradze
    A. Trombettoni
    Y. Turovtsi-Shiutev
    I. Nándori
    [J]. Journal of High Energy Physics, 2022
  • [2] NON-DIFFERENTIABLE FUNCTIONS
    ANDRESEN, E
    MAULDON, JG
    DRISCOLL, RJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (06): : 688 - &
  • [3] Non-differentiable deformations of Rn
    Cresson, Jacky
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) : 1395 - 1415
  • [4] Programming with a non-differentiable constraint
    G. C. Tuteja
    [J]. OPSEARCH, 2004, 41 (4) : 291 - 297
  • [5] Non-differentiable variational principles
    Cresson, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) : 48 - 64
  • [6] Non-Differentiable Function Tracking
    Kamal, Shyam
    Yu, Xinghuo
    Sharma, Rahul Kumar
    Mishra, Jyoti
    Ghosh, Sandip
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (11) : 1835 - 1839
  • [7] ON WEIERSTRASS NON-DIFFERENTIABLE FUNCTION
    HATA, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (03): : 119 - 123
  • [8] THERMODYNAMICS OF NON-DIFFERENTIABLE SYSTEMS
    BOYLING, JB
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 9 (06) : 379 - 392
  • [9] Non-differentiable symmetric duality
    Mond, B
    Schechter, M
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (02) : 177 - 188
  • [10] MINIMIZATION OF NON-DIFFERENTIABLE FUNCTIONALS
    SIBONY, M
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1970, 8 (02) : 105 - &