Non-differentiable variational principles

被引:44
|
作者
Cresson, J [1 ]
机构
[1] Univ Franche Comte, CNRS, UMR 6623, Equipe Math Besancon, F-25030 Besancon, France
关键词
non-differentiable functions; variational principle; least-action principle; Schrodinger's equation;
D O I
10.1016/j.jmaa.2004.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a calculus of variations for functionals which are defined on a set of non-differentiable curves. We first extend the classical differential calculus in a quantum calculus, which allows us to define a complex operator, called the scale derivative, which is the non-differentiable analogue of the classical derivative. We then define the notion of extremals for our functionals and obtain a characterization in term of a generalized Euler-Lagrange equation. We finally prove that solutions of the Schrodinger equation can be obtained as extremals of a non-differentiable variational principle, leading to an extended Hamilton's principle of least action for quantum mechanics. We compare this approach with the scale relativity theory of Nottale, which assumes a fractal structure of space-time. © 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 64
页数:17
相关论文
共 50 条
  • [31] Lineability of non-differentiable Pettis primitives
    B. Bongiorno
    U. B. Darji
    L. Di Piazza
    [J]. Monatshefte für Mathematik, 2015, 177 : 345 - 362
  • [32] Horizons Non-Differentiable on a Dense Set
    Piotr T. Chruściel
    Gregory J. Galloway
    [J]. Communications in Mathematical Physics, 1998, 193 : 449 - 470
  • [33] Optimizing Non-Differentiable Metrics for Hashing
    Wei, Yiwen
    Tian, Dayong
    Shi, Jiao
    Lei, Yu
    [J]. IEEE ACCESS, 2021, 9 : 14351 - 14357
  • [34] Horizons non-differentiable on a dense set
    Chrusciel, PT
    Galloway, GJ
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 193 (02) : 449 - 470
  • [35] Regularization of derivatives on non-differentiable points
    Prodanov, Dimiter
    [J]. EMQM15: EMERGENT QUANTUM MECHANICS 2015, 2016, 701
  • [36] INVARIANT MANIFOLDS FOR NON-DIFFERENTIABLE OPERATORS
    Martens, Marco
    Palmisano, Liviana
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (02) : 1101 - 1169
  • [37] ON ASYMMETRICAL DERIVATES OF NON-DIFFERENTIABLE FUNCTIONS
    GARG, KM
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (01): : 135 - &
  • [38] Lineability of non-differentiable Pettis primitives
    Bongiorno, B.
    Darji, U. B.
    Di Piazza, L.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2015, 177 (03): : 345 - 362
  • [39] Projected subgradient methods with non-Euclidean distances for non-differentiable convex minimization and variational inequalities
    Auslender, Alfred
    Teboulle, Marc
    [J]. MATHEMATICAL PROGRAMMING, 2009, 120 (01) : 27 - 48
  • [40] BIFURCATION FOR NON-DIFFERENTIABLE OPERATORS WITH AN APPLICATION TO ELASTICITY
    MCLEOD, JB
    TURNER, REL
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 63 (01) : 1 - 45