Implications of Non-Differentiable Entropy on a Space-Time Manifold

被引:9
|
作者
Agop, Maricel [1 ]
Gavrilut, Alina [2 ]
Stefan, Gavril [3 ]
Doroftei, Bogdan [4 ]
机构
[1] Gheorghe Asachi Tech Univ Iasi, Dept Phys, Iasi 700050, Romania
[2] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
[3] Univ Agr Sci & Vet Med Iasi, Agroecon Dept, Fac Agr, Iasi 700490, Romania
[4] Grigore T Popa Univ Med & Pharm, Origyn Fertil Ctr, Clin Hosp Obstet & Gynaecol, Iasi 700032, Romania
来源
ENTROPY | 2015年 / 17卷 / 04期
关键词
AUTOPHAGY; TRANSPORT;
D O I
10.3390/e17042184
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Assuming that the motions of a complex system structural units take place on continuous, but non-differentiable curves of a space-time manifold, the scale relativity model with arbitrary constant fractal dimension (the hydrodynamic and wave function versions) is built. For non-differentiability through stochastic processes of the Markov type, the non-differentiable entropy concept on a space-time manifold in the hydrodynamic version and its correspondence with motion variables (energy, momentum, etc.) are established. Moreover, for the same non-differentiability type, through a scale resolution dependence of a fundamental length and wave function independence with respect to the proper time, a non-differentiable Klein-Gordon-type equation in the wave function version is obtained. For a phase-amplitude functional dependence on the wave function, the non-differentiable spontaneous symmetry breaking mechanism implies pattern generation in the form of Cooper non-differentiable-type pairs, while its non-differentiable topology implies some fractal logic elements (fractal bit, fractal gates, etc.).
引用
收藏
页码:2184 / 2197
页数:14
相关论文
共 50 条
  • [1] Scale relativity and non-differentiable fractal space-time
    Nottale, L
    [J]. FRONTIERS OF FUNDAMENTAL PHYSICS 4, 2001, : 65 - 79
  • [2] Transport phenomena in nanostructures and non-differentiable space-time
    Agop, M.
    Chicos, Liliana
    Nica, P.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (02) : 803 - 814
  • [3] The theory of scale relativity: Non-differentiable geometry and fractal space-time
    Nottale, L
    [J]. COMPUTING ANTICIPATORY SYSTEMS, 2004, 718 : 68 - 95
  • [4] Consequences of non-differentiable angular dispersion in optics: tilted pulse fronts versus space-time wave packets
    Hall, Layton A.
    Abouraddy, Ayman F.
    [J]. OPTICS EXPRESS, 2022, 30 (04) : 4817 - 4832
  • [5] Non-Differentiable Mechanical Model and Its Implications
    M. Agop
    O. Niculescu
    A. Timofte
    L. Bibire
    A. S. Ghenadi
    A. Nicuta
    C. Nejneru
    G. V. Munceleanu
    [J]. International Journal of Theoretical Physics, 2010, 49 : 1489 - 1506
  • [6] Non-Differentiable Mechanical Model and Its Implications
    Agop, M.
    Niculescu, O.
    Timofte, A.
    Bibire, L.
    Ghenadi, A. S.
    Nicuta, A.
    Nejneru, C.
    Munceleanu, G. V.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (07) : 1489 - 1506
  • [7] On Non-differentiable Time-varying Optimization
    Simonetto, Andrea
    Leus, Geert
    [J]. 2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 505 - 508
  • [8] Informational Non-Differentiable Entropy and Uncertainty Relations in Complex Systems
    Agop, Maricel
    Gavrilut, Alina
    Crumpei, Gabriel
    Doroftei, Bogdan
    [J]. ENTROPY, 2014, 16 (11) : 6042 - 6058
  • [9] NON-DIFFERENTIABLE FUNCTIONS
    ANDRESEN, E
    MAULDON, JG
    DRISCOLL, RJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (06): : 688 - &
  • [10] DIFFERENTIABLE AND CAUSAL STRUCTURES OF SPACE-TIME
    WOODHOUSE, NM
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (04) : 495 - 501