Robust nonlinear parameter estimation in tracer kinetic analysis using infinity norm regularization and particle swarm optimization

被引:0
|
作者
Kang, Seung Kwan [1 ,2 ]
Seo, Seongho [3 ,4 ]
Lee, Chul-Hee [1 ,5 ]
Kim, Mi Jeong [2 ]
Kim, Su Jin [6 ]
Lee, Jae Sung [1 ,2 ,7 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Biomed Sci, Seoul, South Korea
[2] Seoul Natl Univ, Coll Med, Dept Nucl Med, 103 Daehak Ro, Seoul 03080, South Korea
[3] Gachon Univ, Dept Neurosci, Coll Med, Incheon, South Korea
[4] Pai Chai Univ, Dept Elect Engn, 155-40 Baejae Ro, Daejeon 35345, South Korea
[5] Korea Inst Radiol & Med Sci, Dept Nucl Med, Seoul, South Korea
[6] Seoul Natl Univ, Dept Nucl Med, Bundang Hosp, Seongnam, South Korea
[7] Seoul Natl Univ, Med Res Ctr, Inst Radiat Med, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Tracer kinetic analysis; Infinity-norm regularization; Particle swam optimization; Non-convex optimization; Positron emission tomography; DYNAMIC PET; RIDGE-REGRESSION; SPATIAL CONSTRAINT; BASIC CONCEPTS; MODELS; CONVERGENCE; GENERATION; ALGORITHM; IMAGES; BINDING;
D O I
10.1016/j.ejmp.2020.03.013
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In positron emission tomography (PET) studies, the voxel-wise calculation of individual rate constants describing the tracer kinetics is quite challenging because of the nonlinear relationship between the rate constants and PET data and the high noise level in voxel data. Based on preliminary simulations using a standard two-tissue compartment model, we can hypothesize that it is possible to reduce errors in the rate constant estimates when constraining the overestimation of the larger of two exponents in the model equation. We thus propose a novel approach based on infinity-norm regularization for limiting this exponent. Owing to the non-smooth cost function of this regularization scheme, which prevents the use of conventional Jacobian-based optimization methods, we examined a proximal gradient algorithm and the particle swarm optimization (PSO) through a simulation study. Because it exploits multiple initial values, the PSO method shows much better convergence than the proximal gradient algorithm, which is susceptible to the initial values. In the implementation of PSO, the use of a Gamma distribution to govern random movements was shown to improve the convergence rate and stability compared to a uniform distribution. Consequently, Gamma-based PSO with regularization was shown to outperform all other methods tested, including the conventional basis function method and Levenberg-Marquardt algorithm, in terms of its statistical properties.
引用
收藏
页码:60 / 72
页数:13
相关论文
共 50 条
  • [1] Kinetic parameter estimation in hydrocracking using hybrid particle swarm optimization
    Kumar, V.
    Balasubramanian, P.
    [J]. FUEL, 2009, 88 (11) : 2171 - 2180
  • [2] Parameter estimation of nonlinear thermoelectric structures using particle swarm optimization
    Ojeda, Daniel R. G.
    de Almeida, Luiz A. L.
    Vilcanqui, Omar A. C.
    [J]. SIMULATION MODELLING PRACTICE AND THEORY, 2018, 81 : 1 - 10
  • [3] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    [J]. CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [4] Indirect and direct kinetic parameter estimation using partially linearized particle swarm optimization
    Kang, Seung Kwan
    Seo, Seongho
    Kim, Su Jin
    Lee, Jae Sung
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (03):
  • [5] Distributed and robust parameter estimation of IIR systems using incremental particle swarm optimization
    Majhi, Babita
    Panda, Ganapati
    [J]. DIGITAL SIGNAL PROCESSING, 2013, 23 (04) : 1303 - 1313
  • [6] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    [J]. VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [7] Cosmological parameter estimation using particle swarm optimization
    Prasad, Jayanti
    Souradeep, Tarun
    [J]. PHYSICAL REVIEW D, 2012, 85 (12):
  • [8] Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model
    Chu, Hone-Jay
    Chang, Liang-Cheng
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2009, 14 (09) : 1024 - 1027
  • [9] Cure kinetic parameter estimation of thermosetting resins with isothermal data by using particle swarm optimization
    Pagano, Rogerio L.
    Calado, Veronica M. A.
    Tavares, Frederico W.
    Biscaia, Evaristo C., Jr.
    [J]. EUROPEAN POLYMER JOURNAL, 2008, 44 (08) : 2678 - 2686
  • [10] Robust Estimation of IIR System's Parameter using Craziness Based Particle Swarm Optimization
    Patnaik, Asutosh
    Panda, Meenakshi
    Dash, Meera
    Panigrahi, T.
    Sharma, R.
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON MAN AND MACHINE INTERFACING (MAMI), 2017,