Robust nonlinear parameter estimation in tracer kinetic analysis using infinity norm regularization and particle swarm optimization

被引:0
|
作者
Kang, Seung Kwan [1 ,2 ]
Seo, Seongho [3 ,4 ]
Lee, Chul-Hee [1 ,5 ]
Kim, Mi Jeong [2 ]
Kim, Su Jin [6 ]
Lee, Jae Sung [1 ,2 ,7 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Biomed Sci, Seoul, South Korea
[2] Seoul Natl Univ, Coll Med, Dept Nucl Med, 103 Daehak Ro, Seoul 03080, South Korea
[3] Gachon Univ, Dept Neurosci, Coll Med, Incheon, South Korea
[4] Pai Chai Univ, Dept Elect Engn, 155-40 Baejae Ro, Daejeon 35345, South Korea
[5] Korea Inst Radiol & Med Sci, Dept Nucl Med, Seoul, South Korea
[6] Seoul Natl Univ, Dept Nucl Med, Bundang Hosp, Seongnam, South Korea
[7] Seoul Natl Univ, Med Res Ctr, Inst Radiat Med, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Tracer kinetic analysis; Infinity-norm regularization; Particle swam optimization; Non-convex optimization; Positron emission tomography; DYNAMIC PET; RIDGE-REGRESSION; SPATIAL CONSTRAINT; BASIC CONCEPTS; MODELS; CONVERGENCE; GENERATION; ALGORITHM; IMAGES; BINDING;
D O I
10.1016/j.ejmp.2020.03.013
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In positron emission tomography (PET) studies, the voxel-wise calculation of individual rate constants describing the tracer kinetics is quite challenging because of the nonlinear relationship between the rate constants and PET data and the high noise level in voxel data. Based on preliminary simulations using a standard two-tissue compartment model, we can hypothesize that it is possible to reduce errors in the rate constant estimates when constraining the overestimation of the larger of two exponents in the model equation. We thus propose a novel approach based on infinity-norm regularization for limiting this exponent. Owing to the non-smooth cost function of this regularization scheme, which prevents the use of conventional Jacobian-based optimization methods, we examined a proximal gradient algorithm and the particle swarm optimization (PSO) through a simulation study. Because it exploits multiple initial values, the PSO method shows much better convergence than the proximal gradient algorithm, which is susceptible to the initial values. In the implementation of PSO, the use of a Gamma distribution to govern random movements was shown to improve the convergence rate and stability compared to a uniform distribution. Consequently, Gamma-based PSO with regularization was shown to outperform all other methods tested, including the conventional basis function method and Levenberg-Marquardt algorithm, in terms of its statistical properties.
引用
收藏
页码:60 / 72
页数:13
相关论文
共 50 条
  • [41] Cosmological parameter estimation using particle swarm optimization (vol 85, 123008, 2012)
    Prasad, Jayanti
    Souradeep, Tarun
    [J]. PHYSICAL REVIEW D, 2014, 90 (10):
  • [42] Parameter estimation of the Bouc-Wen hysteresis model using particle swarm optimization
    Ye, Meiying
    Wang, Xiaodong
    [J]. SMART MATERIALS AND STRUCTURES, 2007, 16 (06) : 2341 - 2349
  • [43] Highly efficient photovoltaic parameter estimation using parallel particle swarm optimization on a GPU
    Gao, Shuhua
    Xiang, Cheng
    Lee, Tong Heng
    [J]. PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [44] Quality-of-Experience Parameter Estimation for Multisensorial Media using Particle Swarm Optimization
    Jalal, Lana
    Popescu, Vlad
    Murroni, Maurizio
    [J]. 2017 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM) & 2017 INTL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP), 2017, : 965 - 970
  • [45] Multi-objective parameter estimation of induction motor using particle swarm optimization
    Sakthivel, V. P.
    Bhuvaneswari, R.
    Subramanian, S.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (03) : 302 - 312
  • [46] Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing
    Mughal, Muhammad Ali
    Ma, Qishuang
    Xiao, Chunyan
    [J]. ENERGIES, 2017, 10 (08)
  • [47] PARAMETER ESTIMATION OF PERMANENT MAGNET SYNCHRONOUS MACHINES USING PARTICLE SWARM OPTIMIZATION ALGORITHM
    Abdelwanis, Mohamed I.
    El-sehiemy, Ragab
    Hamida, Mohmed A.
    [J]. REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2022, 67 (04): : 377 - 382
  • [48] Accurate Parameter Estimation of Contaminant Transport Inverse Problem using Particle Swarm Optimization
    Bharat, Tadikonda Venkata
    Sivapullaiah, P. V.
    Allam, M. M.
    [J]. 2008 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2008, : 402 - 408
  • [49] Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2633 - 2638
  • [50] A NEW ALGORITHM IN NONLINEAR ANALYSIS OF STRUCTURES USING PARTICLE SWARM OPTIMIZATION
    Mansouri, Iman
    Shahri, Ali
    Zahedifar, Hassan
    [J]. IIUM ENGINEERING JOURNAL, 2016, 17 (02): : 157 - 168