Generalized Sidon sets of perfect powers

被引:0
|
作者
Kiss, Sandor Z. [1 ]
Sandor, Csaba [2 ,3 ,4 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, Dept Algebra, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Muegyet Rkp 3, H-1111 Budapest, Hungary
[4] ELKH, MTA BME Lendulet Arithmet Combinator Res Grp, Muegyet Rkp 3, H-1111 Budapest, Hungary
来源
RAMANUJAN JOURNAL | 2022年 / 59卷 / 02期
关键词
Additive number theory; General sequences; Additive representation function; Sidon set;
D O I
10.1007/s11139-022-00622-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For h >= 2 and an infinite set of positive integers A, let R-A,R-h(n) denote the number of representations of the positive integer n as the sum of h distinct terms from A. A set of positive integers A is called a B-h[g] set if every positive integer can be written as the sum of h not necessarily distinct terms from A at most g different ways. We say a set A is a basis of order h if every positive integer can be represented as the sum of h terms from A. Recently, Vu [17] proved the existence of a thin basis of order h formed by perfect powers. In this paper, we study weak B-h[g] sets formed by perfect powers. In particular, we prove the existence of a set A formed by perfect powers with almost possible maximal density such that R-A,R-h(n) is bounded by using probabilistic methods.
引用
收藏
页码:351 / 363
页数:13
相关论文
共 50 条
  • [41] On infinite multiplicative Sidon sets
    Pach, Peter Pal
    Sandor, Csaba
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 76 : 37 - 52
  • [42] Additive and multiplicative Sidon sets
    Ruzsa, I. Z.
    ACTA MATHEMATICA HUNGARICA, 2006, 112 (04) : 345 - 354
  • [43] ON UNIFORMLY APPROXIMABLE SIDON SETS
    CHANEY, RW
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 21 (01) : 245 - +
  • [44] On strong Sidon sets of integers
    Kohayakawa, Yoshiharu
    Lee, Sang June
    Moreira, Carlos Gustavo
    Rodl, Vojtech
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 183
  • [45] SIDON SETS IN A UNION OF INTERVALS
    R. RIBLET
    Acta Mathematica Hungarica, 2022, 167 : 533 - 547
  • [46] SIDON SETS AND RIESZ PRODUCTS
    BOURGAIN, J
    ANNALES DE L INSTITUT FOURIER, 1985, 35 (01) : 137 - 148
  • [47] Additive and multiplicative Sidon sets
    O. Roche-Newton
    A. Warren
    Acta Mathematica Hungarica, 2021, 165 : 326 - 336
  • [48] Oil the ubiquity of Sidon sets
    Nathanson, MB
    NUMBER THEORY, 2004, : 263 - 272
  • [49] Sidon sets for linear forms
    Nathanson, Melvyn B.
    JOURNAL OF NUMBER THEORY, 2022, 239 : 207 - 227
  • [50] ARITHMETIC CHARACTERIZATIONS OF SIDON SETS
    PISIER, G
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 8 (01) : 87 - 89