Generalized Sidon sets of perfect powers

被引:0
|
作者
Kiss, Sandor Z. [1 ]
Sandor, Csaba [2 ,3 ,4 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, Dept Algebra, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Muegyet Rkp 3, H-1111 Budapest, Hungary
[4] ELKH, MTA BME Lendulet Arithmet Combinator Res Grp, Muegyet Rkp 3, H-1111 Budapest, Hungary
来源
RAMANUJAN JOURNAL | 2022年 / 59卷 / 02期
关键词
Additive number theory; General sequences; Additive representation function; Sidon set;
D O I
10.1007/s11139-022-00622-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For h >= 2 and an infinite set of positive integers A, let R-A,R-h(n) denote the number of representations of the positive integer n as the sum of h distinct terms from A. A set of positive integers A is called a B-h[g] set if every positive integer can be written as the sum of h not necessarily distinct terms from A at most g different ways. We say a set A is a basis of order h if every positive integer can be represented as the sum of h terms from A. Recently, Vu [17] proved the existence of a thin basis of order h formed by perfect powers. In this paper, we study weak B-h[g] sets formed by perfect powers. In particular, we prove the existence of a set A formed by perfect powers with almost possible maximal density such that R-A,R-h(n) is bounded by using probabilistic methods.
引用
收藏
页码:351 / 363
页数:13
相关论文
共 50 条
  • [21] Sidon sets in Nd
    Cilleruelo, Javier
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (07) : 857 - 871
  • [22] BIRELATIONS AND SIDON SETS
    DRURY, SW
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 53 (01) : 123 - 128
  • [23] SIDON SETS IN RN
    VAROPOULOS, NT
    MATHEMATICA SCANDINAVICA, 1970, 27 (01) : 39 - +
  • [24] ALPHA(P) SETS AND SIDON SETS
    EBENSTEIN, SE
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 36 (02) : 619 - 620
  • [25] SIDON SETS AND SMALL P SETS
    DRESSLER, RE
    PARKER, W
    PIGNO, L
    QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (93): : 79 - 80
  • [26] ON PERFECT POWERS IN k-GENERALIZED PELL SEQUENCE
    Siar, Zafer
    Keskin, Refik
    Oztas, Elif Segah
    MATHEMATICA BOHEMICA, 2023, 148 (04): : 507 - 518
  • [27] On generalized Sidon spaces
    Castello, Chiara
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 704 : 270 - 308
  • [28] On the Size of Finite Sidon Sets
    O'Bryant, Kevin
    UKRAINIAN MATHEMATICAL JOURNAL, 2025, 76 (08) : 1352 - 1368
  • [29] SIDON SETS IN A UNION OF INTERVALS
    Riblet, R.
    ACTA MATHEMATICA HUNGARICA, 2022, 167 (02) : 533 - 547
  • [30] Sidon sets and Sidon-partitions in cyclic groups through almost different sets
    Delgado, Luis-Miguel
    Montejano, Amanda
    Ruiz, Hamilton
    Trujillo, Carlos
    XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 267 - 274