Generalized Sidon sets of perfect powers

被引:0
|
作者
Kiss, Sandor Z. [1 ]
Sandor, Csaba [2 ,3 ,4 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, Dept Algebra, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Muegyet Rkp 3, H-1111 Budapest, Hungary
[4] ELKH, MTA BME Lendulet Arithmet Combinator Res Grp, Muegyet Rkp 3, H-1111 Budapest, Hungary
来源
RAMANUJAN JOURNAL | 2022年 / 59卷 / 02期
关键词
Additive number theory; General sequences; Additive representation function; Sidon set;
D O I
10.1007/s11139-022-00622-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For h >= 2 and an infinite set of positive integers A, let R-A,R-h(n) denote the number of representations of the positive integer n as the sum of h distinct terms from A. A set of positive integers A is called a B-h[g] set if every positive integer can be written as the sum of h not necessarily distinct terms from A at most g different ways. We say a set A is a basis of order h if every positive integer can be represented as the sum of h terms from A. Recently, Vu [17] proved the existence of a thin basis of order h formed by perfect powers. In this paper, we study weak B-h[g] sets formed by perfect powers. In particular, we prove the existence of a set A formed by perfect powers with almost possible maximal density such that R-A,R-h(n) is bounded by using probabilistic methods.
引用
收藏
页码:351 / 363
页数:13
相关论文
共 50 条
  • [31] ON SUM SETS OF SIDON SETS .2.
    ERDOS, P
    SARKOZY, A
    SOS, VT
    ISRAEL JOURNAL OF MATHEMATICS, 1995, 90 (1-3) : 221 - 233
  • [32] ON LINEARISED POLYNOMIALS, SIDON ARRAYS AND FAST CONSTRUCTION OF SIDON SETS
    Andrade, Cesar
    Bermudez, Yamidt
    Trujillo, Carlos
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (03) : 376 - 384
  • [33] P-SIDON SETS
    JOHNSON, GW
    WOODWARD, GS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A167 - A167
  • [34] SIDON SETS ON COMPACT GROUPS
    DUNKL, CF
    RAMIREZ, DE
    MONATSHEFTE FUR MATHEMATIK, 1971, 75 (02): : 111 - &
  • [35] ON SUM SETS OF SIDON SETS .1.
    ERDOS, P
    SARKOZY, A
    SOS, T
    JOURNAL OF NUMBER THEORY, 1994, 47 (03) : 329 - 347
  • [36] The Relationship Between ε-Kronecker Sets and Sidon Sets
    Hare, Kathryn
    Ramsey, L. Thomas
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (03): : 521 - 527
  • [37] Sidon Sets in Finite Contexts
    Trujillo Solarte, Carlos Alberto
    REVISTA DE LA ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS FISICAS Y NATURALES, 2023, 47 (185): : 1024 - 1044
  • [38] P-SIDON SETS
    EDWARDS, RE
    ROSS, KA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (02): : A273 - A273
  • [39] SIDON SETS IN ALGEBRAIC GEOMETRY
    Forey, Arthur
    Fresán, Javier
    Kowalski, Emmanuel
    arXiv, 2023,
  • [40] On Sidon sets and asymptotic bases
    Cilleruelo, Javier
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 : 1206 - 1230