Additive and multiplicative Sidon sets

被引:0
|
作者
O. Roche-Newton
A. Warren
机构
[1] Johann Radon Institute for Computational and Applied Mathematics (RICAM),
来源
Acta Mathematica Hungarica | 2021年 / 165卷
关键词
arithmetic combinatorics; Sidon; construction; 11B30; 11B13;
D O I
暂无
中图分类号
学科分类号
摘要
We give a construction of a set A⊂N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \subset \mathbb N$$\end{document} such that any subset A′⊂A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A' \subset A}$$\end{document} with |A′|≫|A|2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|A'| \gg |A|^{2/3}$$\end{document} is neither an additive nor multiplicative Sidon set. In doing so, we refute a conjecture of Klurman and Pohoata.
引用
收藏
页码:326 / 336
页数:10
相关论文
共 50 条
  • [1] Additive and multiplicative Sidon sets
    Imre Z. Ruzsa
    Acta Mathematica Hungarica, 2006, 112 : 345 - 354
  • [2] Additive and multiplicative Sidon sets
    Ruzsa, I. Z.
    ACTA MATHEMATICA HUNGARICA, 2006, 112 (04) : 345 - 354
  • [3] ADDITIVE AND MULTIPLICATIVE SIDON SETS
    Roche-newton, O.
    Warren, A.
    ACTA MATHEMATICA HUNGARICA, 2021, 165 (02) : 326 - 336
  • [4] Finding large additive and multiplicative Sidon sets in sets of integers
    Jing, Yifan
    Mudgal, Akshat
    MATHEMATISCHE ANNALEN, 2025, 391 (01) : 685 - 715
  • [5] On infinite multiplicative Sidon sets
    Pach, Peter Pal
    Sandor, Csaba
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 76 : 37 - 52
  • [6] Generalized multiplicative Sidon sets
    Pach, Peter Pal
    JOURNAL OF NUMBER THEORY, 2015, 157 : 507 - 529
  • [7] The number of multiplicative Sidon sets of integers
    Liu, Hong
    Pach, Peter Pal
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 165 : 152 - 175
  • [8] Colourings of the cartesian product of graphs and multiplicative Sidon sets
    Attila Pór
    David R. Wood
    Combinatorica, 2009, 29 : 449 - 466
  • [9] COLOURINGS OF THE CARTESIAN PRODUCT OF GRAPHS AND MULTIPLICATIVE SIDON SETS
    Por, Attila
    Wood, David R.
    COMBINATORICA, 2009, 29 (04) : 449 - 466
  • [10] An improved upper bound for the size of the multiplicative 3-Sidon sets
    Pach, Peter Pal
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (08) : 1721 - 1729