We give a construction of a set A⊂N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A \subset \mathbb N$$\end{document} such that any subset A′⊂A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${A' \subset A}$$\end{document} with |A′|≫|A|2/3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$|A'| \gg |A|^{2/3}$$\end{document} is neither an additive nor multiplicative Sidon set. In doing so, we refute a conjecture of Klurman and Pohoata.
机构:
Univ Nova Lisboa, Dept Matemat, P-2829516 Caparica, PortugalVilnius Univ, Dept Math & Informat, LT-03225 Vilnius, Lithuania
Silva, Manuel
Sarka, Paulius
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius Univ, Dept Math & Informat, LT-03225 Vilnius, Lithuania
Inst Math & Informat, LT-08663 Vilnius, LithuaniaVilnius Univ, Dept Math & Informat, LT-03225 Vilnius, Lithuania