Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative

被引:5
|
作者
Almalahi, Mohammed A. [1 ,2 ]
Panchal, Satish K. [1 ]
Jarad, Fahd [3 ,4 ]
Abdo, Mohammed S. [5 ]
Shah, Kamal [6 ,7 ]
Abdeljawad, Thabet [6 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad, Maharashtra, India
[2] Hajjah Univ, Dept Math, Hajjah, Yemen
[3] Cankaya Univ, Dept Math, Ankara, Turkey
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Hodeidah Univ, Dept Math, Al Hodeidah, Yemen
[6] Prince Sultan Univ, Dept Math & Sci, Riyadh, Saudi Arabia
[7] Univ Malakand, Dept Math, Chakdara Dir Lower, Khyber Pakhtunk, Pakistan
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 09期
关键词
Atangana Baleanu fractional derivative; fractional differential equations; fuzzy fractional; derivatives; fuzzy valued functions; generalized Hukuhara differentiability; fixed point theorem; DIFFERENTIAL-EQUATIONS; CALCULUS; SIMULATIONS; INTEGRATION; SYSTEMS; CAPUTO;
D O I
10.3934/math.2022876
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The point of this work was to analyze and investigate the sufficient conditions of the existence and uniqueness of solutions for the nonlinear fuzzy fractional Volterra Fredholm integrodifferential equation in the frame of the Atangana-Baleanu-Caputo fractional derivative methodology. To begin with, we give the parametric interval form of the Atangana-Baleanu-Caputo fractional derivative on fuzzy set-valued functions. Then, by employing Schauder???s and Banach???s fixed point procedures, we examine the existence and uniqueness of solutions for fuzzy fractional Volterra Fredholm integro-differential equation with the Atangana-Baleanu-Caputo fractional operator. It turns out that the last interval model is a combined arrangement of nonlinear equations. In addition, we consider results by applying the Adams Bashforth fractional technique and present two examples that have been numerically solved using graphs.
引用
收藏
页码:15994 / 16016
页数:23
相关论文
共 50 条
  • [21] Controllability analysis for impulsive integro-differential equation via Atangana-Baleanu fractional derivative
    Kaliraj, Kalimuthu
    Thilakraj, Elumalai
    Ravichandran, Chokkalingam
    Sooppy Nisar, Kottakkaran
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,
  • [22] Analysis and numerical simulation of multicomponent system with Atangana-Baleanu fractional derivative
    Owolabi, Kolade M.
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 115 : 127 - 134
  • [23] Fractional nonlinear Volterra–Fredholm integral equations involving Atangana–Baleanu fractional derivative: framelet applications
    Mutaz Mohammad
    Alexander Trounev
    [J]. Advances in Difference Equations, 2020
  • [24] Adaptation of kernel functions-based approach with Atangana-Baleanu-Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations
    Abu Arqub, Omar
    Singh, Jagdev
    Alhodaly, Mohammed
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) : 7807 - 7834
  • [25] Optimally analyzed fractional Coronavirus model with Atangana-Baleanu derivative
    Butt, A. I. K.
    Ahmad, W.
    Rafiq, M.
    Ahmad, N.
    Imran, M.
    [J]. RESULTS IN PHYSICS, 2023, 53
  • [26] Study of Fuzzy Fractional Third-Order Dispersive KdV Equation in a Plasma under Atangana-Baleanu Derivative
    Areshi, Mounirah
    El-Tantawy, S. A.
    Alotaibi, B. M.
    Zaland, Shamsullah
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [27] Results on the approximate controllability of Atangana-Baleanu fractional stochastic delay integrodifferential systems
    Johnson, M.
    Vijayakumar, V.
    Nisar, Kottakkaran Sooppy
    Shukla, Anurag
    Botmart, Thongchai
    Ganesh, V
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 62 : 211 - 222
  • [28] A creep constitutive model based on Atangana-Baleanu fractional derivative
    Deng, Huilin
    Zhou, Hongwei
    Wei, Qing
    Li, Lifeng
    Jia, Wenhao
    [J]. MECHANICS OF TIME-DEPENDENT MATERIALS, 2023, 27 (04) : 1171 - 1186
  • [29] Real world applications of fractional models by Atangana-Baleanu fractional derivative
    Bas, Erdal
    Ozarslan, Ramazan
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 116 : 121 - 125
  • [30] Modelling immune systems based on Atangana-Baleanu fractional derivative
    Al-khedhairi, A.
    Elsadany, A. A.
    Elsonbaty, A.
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 129 : 25 - 39