Real world applications of fractional models by Atangana-Baleanu fractional derivative

被引:97
|
作者
Bas, Erdal [1 ]
Ozarslan, Ramazan [1 ]
机构
[1] Firat Univ, Dept Math, Elazig, Turkey
关键词
Fractional operator; Atangana-Baleanu fractional derivative; Mittag-Leffler kernel; Laplace transform; Modeling problems; LAW;
D O I
10.1016/j.chaos.2018.09.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, some modeling problems, Newton,'s law of cooling, population growth, logistic equation, blood alcohol model, are considered by Atangana-Baleanu fractional derivative. Analytical solutions are obtained by Laplace transform and results are simulated by figures under different orders. Atangana-Baleanu fractional derivative gives more precise results to the derivative with exponential kernel because of having fractional order, and so it is a generalized version of the derivative with exponential kernel. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:121 / 125
页数:5
相关论文
共 50 条
  • [1] New numerical simulations for some real world problems with Atangana-Baleanu fractional derivative
    Gao, Wei
    Ghanbari, Behzad
    Baskonus, Haci Mehmet
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 128 : 34 - 43
  • [2] Applications of the Atangana-Baleanu Fractional Integral Operator
    Lupas, Alina Alb
    Catas, Adriana
    [J]. SYMMETRY-BASEL, 2022, 14 (03):
  • [3] Fuzzy fractional differential equations with the generalized Atangana-Baleanu fractional derivative
    Vu, Ho
    Ghanbari, Behzad
    Ngo Van Hoa
    [J]. FUZZY SETS AND SYSTEMS, 2022, 429 : 1 - 27
  • [4] Freelance Model with Atangana-Baleanu Caputo Fractional Derivative
    Khan, Fareeha Sami
    Khalid, M.
    Al-moneef, Areej A.
    Ali, Ali Hasan
    Bazighifan, Omar
    [J]. SYMMETRY-BASEL, 2022, 14 (11):
  • [5] A Fractional SAIDR Model in the Frame of Atangana-Baleanu Derivative
    Ucar, Esmehan
    Ucar, Sumeyra
    Evirgen, Firat
    Ozdemir, Necati
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (02)
  • [6] Analysis of a fractional eigenvalue problem involving Atangana-Baleanu fractional derivative: A maximum principle and applications
    Al-Refai, Mohammed
    Hajji, Mohamed Ali
    [J]. CHAOS, 2019, 29 (01)
  • [7] Optimal control problems with Atangana-Baleanu fractional derivative
    Tajadodi, Haleh
    Khan, Aziz
    Francisco Gomez-Aguilar, Jose
    Khan, Hasib
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (01): : 96 - 109
  • [8] Optimally analyzed fractional Coronavirus model with Atangana-Baleanu derivative
    Butt, A. I. K.
    Ahmad, W.
    Rafiq, M.
    Ahmad, N.
    Imran, M.
    [J]. RESULTS IN PHYSICS, 2023, 53
  • [9] NUMERICAL ANALYSIS OF COUPLED FRACTIONAL DIFFERENTIAL EQUATIONS WITH ATANGANA-BALEANU FRACTIONAL DERIVATIVE
    Koca, Ilknur
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (03): : 475 - 486
  • [10] A creep constitutive model based on Atangana-Baleanu fractional derivative
    Deng, Huilin
    Zhou, Hongwei
    Wei, Qing
    Li, Lifeng
    Jia, Wenhao
    [J]. MECHANICS OF TIME-DEPENDENT MATERIALS, 2023, 27 (04) : 1171 - 1186