Real world applications of fractional models by Atangana-Baleanu fractional derivative

被引:97
|
作者
Bas, Erdal [1 ]
Ozarslan, Ramazan [1 ]
机构
[1] Firat Univ, Dept Math, Elazig, Turkey
关键词
Fractional operator; Atangana-Baleanu fractional derivative; Mittag-Leffler kernel; Laplace transform; Modeling problems; LAW;
D O I
10.1016/j.chaos.2018.09.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, some modeling problems, Newton,'s law of cooling, population growth, logistic equation, blood alcohol model, are considered by Atangana-Baleanu fractional derivative. Analytical solutions are obtained by Laplace transform and results are simulated by figures under different orders. Atangana-Baleanu fractional derivative gives more precise results to the derivative with exponential kernel because of having fractional order, and so it is a generalized version of the derivative with exponential kernel. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:121 / 125
页数:5
相关论文
共 50 条
  • [21] Fractional model of Ebola virus in population of bats in frame of Atangana-Baleanu fractional derivative
    Almuqrin, M. A.
    Goswami, P.
    Sharma, S.
    Khan, I.
    Dubey, R. S.
    Khan, A.
    [J]. RESULTS IN PHYSICS, 2021, 26
  • [22] Fractional differential equations with Atangana–Baleanu fractional derivative: Analysis and applications
    Syam M.I.
    Al-Refai M.
    [J]. Chaos, Solitons and Fractals: X, 2019, 2
  • [23] USE OF ATANGANA-BALEANU FRACTIONAL DERIVATIVE IN HELICAL FLOW OF A CIRCULAR PIPE
    Abro, Kashif Ali
    Khan, Ilyas
    Nisar, Kottakkaran Sooppy
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (08)
  • [24] Fractional nonlinear Volterra-Fredholm integral equations involving Atangana-Baleanu fractional derivative: framelet applications
    Mohammad, Mutaz
    Trounev, Alexander
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [25] A FRACTIONAL MODEL FOR THE DYNAMICS OF TUBERCULOSIS (TB) USING ATANGANA-BALEANU DERIVATIVE
    Ullah, Saif
    Khan, Muhammad Altaf
    Farooq, Muhammad
    Alzahrani, Ebraheem O.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 937 - 956
  • [26] Analysis of Keller-Segel Model with Atangana-Baleanu Fractional Derivative
    Dokuyucu, Mustafa Ali
    Baleanu, Dumitru
    Celik, Ercan
    [J]. FILOMAT, 2018, 32 (16) : 5633 - 5643
  • [27] On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative
    Jarad, Fahd
    Abdeljawad, Thabet
    Hammouch, Zakia
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 117 : 16 - 20
  • [28] Fuzzy fractional delay integro-differential equation with the generalized Atangana-Baleanu fractional derivative
    Wang, Guotao
    Feng, Meihua
    Zhao, Xianghong
    Yuan, Hualei
    [J]. DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [29] A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative
    Khan, Muhammad Altaf
    Ullah, Saif
    Farooq, Muhammad
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 116 : 227 - 238
  • [30] Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (15) : 1937 - 1952