Real world applications of fractional models by Atangana-Baleanu fractional derivative

被引:97
|
作者
Bas, Erdal [1 ]
Ozarslan, Ramazan [1 ]
机构
[1] Firat Univ, Dept Math, Elazig, Turkey
关键词
Fractional operator; Atangana-Baleanu fractional derivative; Mittag-Leffler kernel; Laplace transform; Modeling problems; LAW;
D O I
10.1016/j.chaos.2018.09.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, some modeling problems, Newton,'s law of cooling, population growth, logistic equation, blood alcohol model, are considered by Atangana-Baleanu fractional derivative. Analytical solutions are obtained by Laplace transform and results are simulated by figures under different orders. Atangana-Baleanu fractional derivative gives more precise results to the derivative with exponential kernel because of having fractional order, and so it is a generalized version of the derivative with exponential kernel. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:121 / 125
页数:5
相关论文
共 50 条
  • [41] Comparative Analysis of Advection-Dispersion Equations with Atangana-Baleanu Fractional Derivative
    Alshehry, Azzh Saad
    Yasmin, Humaira
    Ghani, Fazal
    Shah, Rasool
    Nonlaopon, Kamsing
    [J]. SYMMETRY-BASEL, 2023, 15 (04):
  • [42] On Atangana-Baleanu fractional granular calculus and its applications to fuzzy economic models in market equilibrium
    Liu, Xuelong
    Ye, Guoju
    Liu, Wei
    Guo, Yating
    Shi, Fangfang
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 450
  • [43] Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative
    D. G. Prakasha
    P. Veeresha
    Haci Mehmet Baskonus
    [J]. The European Physical Journal Plus, 134
  • [44] Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative
    Prakasha, D. G.
    Veeresha, P.
    Baskonus, Haci Mehmet
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [45] Fuzzy Differential Subordination of the Atangana-Baleanu Fractional Integral
    Lupas, Alina Alb
    Catas, Adriana
    [J]. SYMMETRY-BASEL, 2021, 13 (10):
  • [46] Inverse problem for the Atangana-Baleanu fractional differential equation
    Ruhil, Santosh
    Malik, Muslim
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (05): : 763 - 779
  • [47] ANALYTICAL TREATMENTS TO SYSTEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH MODIFIED ATANGANA-BALEANU DERIVATIVE
    Al-Refai, Mohammed
    Syam, Muhammed I.
    Baleanu, Dumitru
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (10)
  • [49] Modeling and analysis of a fractional anthroponotic cutaneous leishmania model with Atangana-Baleanu derivative
    Haq, Ikramul
    Khan, Amir
    Ahmad, Saeed
    Ali, Amir
    Rahman, Mati Ur
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2022, 25 (15) : 1722 - 1743
  • [50] Modeling and analysis of an epidemic model with fractal-fractional Atangana-Baleanu derivative
    El-Dessoky, M. M.
    Khan, Muhammad Altaf
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 729 - 746