Modeling and analysis of a fractional anthroponotic cutaneous leishmania model with Atangana-Baleanu derivative

被引:3
|
作者
Haq, Ikramul [1 ]
Khan, Amir [2 ]
Ahmad, Saeed [1 ]
Ali, Amir [1 ]
Rahman, Mati Ur [3 ]
机构
[1] Univ Malakand, Dept Math, Khyber Pakhtunkhawa, Pakistan
[2] Univ Swat, Dept Math, Khyber Pakhtunkhawa, Pakistan
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai, Peoples R China
关键词
Infectious disease model; Leshmania anthroponotic cutaneous problem; Atangana-Baleanu-Caputo AB derivative; Pontryagin's maximum principle; numerical solutions; ORDER COVID-19 MODEL; DISEASE;
D O I
10.1080/10255842.2022.2035372
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Very recently, Atangana and Baleanu defined a novel arbitrary order derivative having a kernel of non-locality and non-singularity, known as AB derivative. We analyze a non-integer order Anthroponotic Leshmania Cutaneous (ACL) problem exploiting this novel AB derivative. We derive equilibria of the model and compute its threshold quantity, i.e. the so-called reproduction number. Conditions for the local stability of the no-disease as well as the disease endemic states are derived in terms of the threshold quantity. The qualitative analysis for solution of the proposed problem have derived with the aid of the theory of fixed point. We use the predictor corrector numerical approach to solve the proposed fractional order model for approximate solution. We also provide, the numerical simulations for each of the compartment of considered model at different fractional orders along with comparison with integer order to elaborate the importance of modern derivative. The fractional investigation shows that the non-integer order derivative is more realistic about the inner dynamics of the Leishmania model lying between integer order.
引用
收藏
页码:1722 / 1743
页数:22
相关论文
共 50 条
  • [1] Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative
    Saif Ullah
    Muhammad Altaf Khan
    Muhammad Farooq
    [J]. The European Physical Journal Plus, 133
  • [2] Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative
    Ullah, Saif
    Khan, Muhammad Altaf
    Farooq, Muhammad
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (08):
  • [3] Modeling and analysis of an epidemic model with fractal-fractional Atangana-Baleanu derivative
    El-Dessoky, M. M.
    Khan, Muhammad Altaf
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 729 - 746
  • [4] Freelance Model with Atangana-Baleanu Caputo Fractional Derivative
    Khan, Fareeha Sami
    Khalid, M.
    Al-moneef, Areej A.
    Ali, Ali Hasan
    Bazighifan, Omar
    [J]. SYMMETRY-BASEL, 2022, 14 (11):
  • [5] A Fractional SAIDR Model in the Frame of Atangana-Baleanu Derivative
    Ucar, Esmehan
    Ucar, Sumeyra
    Evirgen, Firat
    Ozdemir, Necati
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (02)
  • [6] Analysis of Keller-Segel Model with Atangana-Baleanu Fractional Derivative
    Dokuyucu, Mustafa Ali
    Baleanu, Dumitru
    Celik, Ercan
    [J]. FILOMAT, 2018, 32 (16) : 5633 - 5643
  • [7] Optimally analyzed fractional Coronavirus model with Atangana-Baleanu derivative
    Butt, A. I. K.
    Ahmad, W.
    Rafiq, M.
    Ahmad, N.
    Imran, M.
    [J]. RESULTS IN PHYSICS, 2023, 53
  • [8] A creep constitutive model based on Atangana-Baleanu fractional derivative
    Deng, Huilin
    Zhou, Hongwei
    Wei, Qing
    Li, Lifeng
    Jia, Wenhao
    [J]. MECHANICS OF TIME-DEPENDENT MATERIALS, 2023, 27 (04) : 1171 - 1186
  • [9] An epidemiological approach to insurgent population modeling with the Atangana-Baleanu fractional derivative
    Kolebaje, Olusola
    Popoola, Oyebola
    Khan, Muhammad Altaf
    Oyewande, Oluwole
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 139
  • [10] An epidemiological model for computer virus with Atangana-Baleanu fractional derivative
    Ravichandran, C.
    Logeswari, K.
    Khan, Aziz
    Abdeljawad, Thabet
    Gomez-Aguilar, J. F.
    [J]. RESULTS IN PHYSICS, 2023, 51