Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative

被引:5
|
作者
Almalahi, Mohammed A. [1 ,2 ]
Panchal, Satish K. [1 ]
Jarad, Fahd [3 ,4 ]
Abdo, Mohammed S. [5 ]
Shah, Kamal [6 ,7 ]
Abdeljawad, Thabet [6 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad, Maharashtra, India
[2] Hajjah Univ, Dept Math, Hajjah, Yemen
[3] Cankaya Univ, Dept Math, Ankara, Turkey
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Hodeidah Univ, Dept Math, Al Hodeidah, Yemen
[6] Prince Sultan Univ, Dept Math & Sci, Riyadh, Saudi Arabia
[7] Univ Malakand, Dept Math, Chakdara Dir Lower, Khyber Pakhtunk, Pakistan
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 09期
关键词
Atangana Baleanu fractional derivative; fractional differential equations; fuzzy fractional; derivatives; fuzzy valued functions; generalized Hukuhara differentiability; fixed point theorem; DIFFERENTIAL-EQUATIONS; CALCULUS; SIMULATIONS; INTEGRATION; SYSTEMS; CAPUTO;
D O I
10.3934/math.2022876
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The point of this work was to analyze and investigate the sufficient conditions of the existence and uniqueness of solutions for the nonlinear fuzzy fractional Volterra Fredholm integrodifferential equation in the frame of the Atangana-Baleanu-Caputo fractional derivative methodology. To begin with, we give the parametric interval form of the Atangana-Baleanu-Caputo fractional derivative on fuzzy set-valued functions. Then, by employing Schauder???s and Banach???s fixed point procedures, we examine the existence and uniqueness of solutions for fuzzy fractional Volterra Fredholm integro-differential equation with the Atangana-Baleanu-Caputo fractional operator. It turns out that the last interval model is a combined arrangement of nonlinear equations. In addition, we consider results by applying the Adams Bashforth fractional technique and present two examples that have been numerically solved using graphs.
引用
收藏
页码:15994 / 16016
页数:23
相关论文
共 50 条
  • [41] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
    Gao, Fei
    Li, Wen-Qin
    Tong, Heng-Qing
    Li, Xi-Ling
    [J]. CHINESE PHYSICS B, 2019, 28 (09)
  • [42] Modeling and analysis of an epidemic model with fractal-fractional Atangana-Baleanu derivative
    El-Dessoky, M. M.
    Khan, Muhammad Altaf
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 729 - 746
  • [43] Analysis of a fractional eigenvalue problem involving Atangana-Baleanu fractional derivative: A maximum principle and applications
    Al-Refai, Mohammed
    Hajji, Mohamed Ali
    [J]. CHAOS, 2019, 29 (01)
  • [44] An epidemiological approach to insurgent population modeling with the Atangana-Baleanu fractional derivative
    Kolebaje, Olusola
    Popoola, Oyebola
    Khan, Muhammad Altaf
    Oyewande, Oluwole
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 139
  • [45] On Atangana-Baleanu fuzzy-fractional optimal control problems
    Younus, Awais
    Ghaffar, Iram
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (04) : 4061 - 4070
  • [46] DYNAMICAL ANALYSIS OF NONAUTONOMOUS RLC CIRCUIT WITH THE ABSENCE AND PRESENCE OF ATANGANA-BALEANU FRACTIONAL DERIVATIVE
    Iqbal, Sayed Allamah
    Hafez, Md Golam
    Chu, Yu-Ming
    Park, Choonkil
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (02): : 770 - 789
  • [47] Analysis of a basic SEIRA model with Atangana-Baleanu derivative
    Ucar, Sumeyra
    [J]. AIMS MATHEMATICS, 2020, 5 (02): : 1411 - 1424
  • [48] A bibliometric analysis of Atangana-Baleanu operators in fractional calculus
    Templeton, Alexander
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2733 - 2738
  • [49] Stability analysis for a class of implicit fractional differential equations involving Atangana-Baleanu fractional derivative
    Asma
    Shabbir, Sana
    Shah, Kamal
    Abdeljawad, Thabet
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [50] Fuzzy fractional estimates of Swift-Hohenberg model obtained using the Atangana-Baleanu fractional derivative operator
    Rashid, Saima
    Sultana, Sobia
    Kanwal, Bushra
    Jarad, Fahd
    Khalid, Aasma
    [J]. AIMS MATHEMATICS, 2022, 7 (09): : 16067 - 16101