Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative

被引:5
|
作者
Almalahi, Mohammed A. [1 ,2 ]
Panchal, Satish K. [1 ]
Jarad, Fahd [3 ,4 ]
Abdo, Mohammed S. [5 ]
Shah, Kamal [6 ,7 ]
Abdeljawad, Thabet [6 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad, Maharashtra, India
[2] Hajjah Univ, Dept Math, Hajjah, Yemen
[3] Cankaya Univ, Dept Math, Ankara, Turkey
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Hodeidah Univ, Dept Math, Al Hodeidah, Yemen
[6] Prince Sultan Univ, Dept Math & Sci, Riyadh, Saudi Arabia
[7] Univ Malakand, Dept Math, Chakdara Dir Lower, Khyber Pakhtunk, Pakistan
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 09期
关键词
Atangana Baleanu fractional derivative; fractional differential equations; fuzzy fractional; derivatives; fuzzy valued functions; generalized Hukuhara differentiability; fixed point theorem; DIFFERENTIAL-EQUATIONS; CALCULUS; SIMULATIONS; INTEGRATION; SYSTEMS; CAPUTO;
D O I
10.3934/math.2022876
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The point of this work was to analyze and investigate the sufficient conditions of the existence and uniqueness of solutions for the nonlinear fuzzy fractional Volterra Fredholm integrodifferential equation in the frame of the Atangana-Baleanu-Caputo fractional derivative methodology. To begin with, we give the parametric interval form of the Atangana-Baleanu-Caputo fractional derivative on fuzzy set-valued functions. Then, by employing Schauder???s and Banach???s fixed point procedures, we examine the existence and uniqueness of solutions for fuzzy fractional Volterra Fredholm integro-differential equation with the Atangana-Baleanu-Caputo fractional operator. It turns out that the last interval model is a combined arrangement of nonlinear equations. In addition, we consider results by applying the Adams Bashforth fractional technique and present two examples that have been numerically solved using graphs.
引用
收藏
页码:15994 / 16016
页数:23
相关论文
共 50 条
  • [1] Fractional nonlinear Volterra-Fredholm integral equations involving Atangana-Baleanu fractional derivative: framelet applications
    Mohammad, Mutaz
    Trounev, Alexander
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] Numerical Solution of Fractional-Order Fredholm Integrodifferential Equation in the Sense of Atangana-Baleanu Derivative
    Wang, Jian
    Kamran
    Jamal, Ayesha
    Li, Xuemei
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [3] On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach
    Allahviranloo, Tofigh
    Ghanbari, Behzad
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 130
  • [4] On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative
    Rashid, Saima
    Jarad, Fahd
    Abualnaja, Khadijah M.
    [J]. AIMS MATHEMATICS, 2021, 6 (10): : 10920 - 10946
  • [5] Fuzzy fractional delay integro-differential equation with the generalized Atangana-Baleanu fractional derivative
    Wang, Guotao
    Feng, Meihua
    Zhao, Xianghong
    Yuan, Hualei
    [J]. DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [6] Fuzzy fractional differential equations with the generalized Atangana-Baleanu fractional derivative
    Vu, Ho
    Ghanbari, Behzad
    Ngo Van Hoa
    [J]. FUZZY SETS AND SYSTEMS, 2022, 429 : 1 - 27
  • [7] On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses
    Arjunan, M. Mallika
    Abdeljawad, Thabet
    Kavitha, V.
    Yousef, Ali
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 148
  • [8] Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator
    Abu Arqub, Omar
    Maayah, Banan
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 117 : 117 - 124
  • [9] Numerical Analysis of Fractional-Order Parabolic Equation Involving Atangana-Baleanu Derivative
    Alesemi, Meshari
    [J]. SYMMETRY-BASEL, 2023, 15 (01):
  • [10] Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative
    Saif Ullah
    Muhammad Altaf Khan
    Muhammad Farooq
    [J]. The European Physical Journal Plus, 133