On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses

被引:25
|
作者
Arjunan, M. Mallika [1 ,2 ]
Abdeljawad, Thabet [3 ,4 ,5 ]
Kavitha, V. [6 ]
Yousef, Ali [7 ]
机构
[1] SASTRA, Sch Arts Sci & Humanities, Dept Math, Thanjavur 613401, Tamil Nadu, India
[2] Srinivas Univ, Dept Math, Surathkal 574146, Karnataka, India
[3] Prince Sultan Univ, Dept Math & Gen Sci, Dept Math, Riyadh, Saudi Arabia
[4] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[6] Karunya Inst Technol & Sci, Sch Sci Arts Media & Management, Dept Math, Coimbatore 641114, Tamil Nadu, India
[7] Kuwait Coll Sci & Technol, Dept Math, Kuwait 27235, Kuwait
关键词
Fractional differential inclusions; Impulsive conditions; Solution operator; Martelli's fixed point theorem; DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.1016/j.chaos.2021.111075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This manuscripts main objective is to examine the existence of piecewise-continuous mild solution of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions (ABFVFIDI) with non-instantaneous impulses (NII) in Banach space. Based on Martelli's fixed point theorem and rho-resolvent operators, we develop the main results. An example is given to support the validation of the theoretical results achieved. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Existence of Atangana-Baleanu fractional neutral Volterra integro-differential equations with non-instantaneous impulses
    Williams, W. Kavitha
    Vijayakumar, V.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 182
  • [2] Existence of Mild Solution for Mixed Volterra-Fredholm Integro Fractional Differential Equation with Non-instantaneous Impulses
    Borah, Jayanta
    Bora, Swaroop Nandan
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2022, 30 (01) : 185 - 196
  • [3] Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type
    Vijayaraj, V.
    Ravichandran, C.
    Sawangtong, Panumart
    Nisar, Kottakkaran Sooppy
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 66 : 249 - 255
  • [4] Existence of mild solution of Atangana-Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions
    Kumar, Ashish
    Pandey, Dwijendra N.
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 132
  • [5] On a New Class of Impulsive η-Hilfer Fractional Volterra-Fredholm Integro-Differential Equations
    Ismaael, F. M.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (04): : 691 - 704
  • [6] Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative
    Almalahi, Mohammed A.
    Panchal, Satish K.
    Jarad, Fahd
    Abdo, Mohammed S.
    Shah, Kamal
    Abdeljawad, Thabet
    [J]. AIMS MATHEMATICS, 2022, 7 (09): : 15994 - 16016
  • [7] Existence of Mild Solution for Mixed Volterra–Fredholm Integro Fractional Differential Equation with Non-instantaneous Impulses
    Jayanta Borah
    Swaroop Nandan Bora
    [J]. Differential Equations and Dynamical Systems, 2022, 30 : 185 - 196
  • [8] CONTROLLABILITY OF HILFER TYPE FRACTIONAL EVOLUTION NEUTRAL INTEGRO-DIFFERENTIAL INCLUSIONS WITH NON-INSTANTANEOUS IMPULSES
    Sanjay, K.
    Balasubramaniam, P.
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, : 600 - 625
  • [9] New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations
    Ravichandran, C.
    Logeswari, K.
    Jarad, Fahd
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 125 : 194 - 200
  • [10] Fuzzy fractional delay integro-differential equation with the generalized Atangana-Baleanu fractional derivative
    Wang, Guotao
    Feng, Meihua
    Zhao, Xianghong
    Yuan, Hualei
    [J]. DEMONSTRATIO MATHEMATICA, 2024, 57 (01)