On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses

被引:25
|
作者
Arjunan, M. Mallika [1 ,2 ]
Abdeljawad, Thabet [3 ,4 ,5 ]
Kavitha, V. [6 ]
Yousef, Ali [7 ]
机构
[1] SASTRA, Sch Arts Sci & Humanities, Dept Math, Thanjavur 613401, Tamil Nadu, India
[2] Srinivas Univ, Dept Math, Surathkal 574146, Karnataka, India
[3] Prince Sultan Univ, Dept Math & Gen Sci, Dept Math, Riyadh, Saudi Arabia
[4] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[6] Karunya Inst Technol & Sci, Sch Sci Arts Media & Management, Dept Math, Coimbatore 641114, Tamil Nadu, India
[7] Kuwait Coll Sci & Technol, Dept Math, Kuwait 27235, Kuwait
关键词
Fractional differential inclusions; Impulsive conditions; Solution operator; Martelli's fixed point theorem; DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.1016/j.chaos.2021.111075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This manuscripts main objective is to examine the existence of piecewise-continuous mild solution of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions (ABFVFIDI) with non-instantaneous impulses (NII) in Banach space. Based on Martelli's fixed point theorem and rho-resolvent operators, we develop the main results. An example is given to support the validation of the theoretical results achieved. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] On fractional neutral integro-differential systems with state-dependent delay and non-instantaneous impulses
    Selvaraj Suganya
    Dumitru Baleanu
    Palaniyappan Kalamani
    Mani Mallika Arjunan
    [J]. Advances in Difference Equations, 2015
  • [42] On the Hilfer Fractional Volterra-Fredholm Integro Differential Equations
    Ivaz, Karim
    Alasadi, Ismael
    Hamoud, Ahmed
    [J]. IAENG International Journal of Applied Mathematics, 2022, 52 (02):
  • [43] Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations
    Hamoud, Ahmed A.
    Ghadle, Kirtiwant P.
    [J]. JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2019, 5 (01): : 58 - 69
  • [44] PERIODIC SOLUTIONS FOR NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH ψ-CAPUTO FRACTIONAL DERIVATIVE
    Foukrach, Djamal
    Bouriah, Soufyane
    Benchohra, Mouffak
    Henderson, Johnny
    [J]. MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2022, 86 : 51 - 68
  • [45] Theoretical Analysis for a System of Nonlinear φ-Hilfer Fractional Volterra-Fredholm Integro-differential Equations
    Hamoud, Ahmed A.
    Mohammed, Nedal M.
    Shah, Rasool
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2023, 16 (02): : 216 - 229
  • [46] Theoretical and Numerical Studies of Fractional Volterra-Fredholm Integro-Differential Equations in Banach Space
    Alsa'di, K.
    Long, N. M. A. Nik
    Eshkuvatov, Z. K.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (03): : 469 - 489
  • [47] EXISTENCE, UNIQUENESS AND STABILITY RESULTS FOR FRACTIONAL NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
    Hamoud, A.
    Osman, M.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (02): : 491 - 506
  • [48] Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials
    Salman, Nour K.
    Mustafa, Muna M.
    [J]. BAGHDAD SCIENCE JOURNAL, 2020, 17 (04) : 1234 - 1240
  • [49] ON THE PERIODIC SOLUTIONS FOR NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH ψ-HILFER FRACTIONAL DERIVATIVE
    Bouriah, Soufyane
    Foukrach, Djamal
    Benchohra, Mouffak
    Zhou, Yong
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (03): : 447 - 467
  • [50] Analyzing existence, uniqueness, and stability of neutral fractional Volterra-Fredholm integro-differential equations
    Gunasekar, Tharmalingam
    Raghavendran, Prabakaran
    Santra, Shyam Sundar
    Sajid, Mohammad
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (04): : 390 - 407