Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type

被引:4
|
作者
Vijayaraj, V. [1 ]
Ravichandran, C. [1 ]
Sawangtong, Panumart [2 ]
Nisar, Kottakkaran Sooppy [3 ]
机构
[1] Kongunadu Arts & Sci Coll, Dept Math, Coimbatore 641029, India
[2] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[3] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
关键词
Fractional calculus; Martelli?s Fixed point theorem; Sobolev type; Inclusion; 2020; MSC; DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.aej.2022.11.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we scrutinise the study of the existence of Sobolev type Atangana-Baleanu fractional integro-differential inclusions in Banach space. The results are gained by using Martelli's fixed point theorem and q-resolvent operators. An example is given for theoretical result.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 4.0/).
引用
收藏
页码:249 / 255
页数:7
相关论文
共 50 条
  • [1] New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations
    Ravichandran, C.
    Logeswari, K.
    Jarad, Fahd
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 125 : 194 - 200
  • [2] Results on Impulsive Fractional Integro-Differential Equations Involving Atangana-Baleanu Derivative
    Karthikeyan, Kulandhivel
    Ege, Ozgur
    Karthikeyan, Panjayan
    [J]. FILOMAT, 2022, 36 (13) : 4617 - 4627
  • [3] Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators
    Arjunan, M. Mallika
    Hamiaz, A.
    Kavitha, V
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 149
  • [4] A new exploration on existence of fractional neutral integro-differential equations in the concept of Atangana-Baleanu derivative
    Logeswari, K.
    Ravichandran, C.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 544
  • [5] Fuzzy fractional delay integro-differential equation with the generalized Atangana-Baleanu fractional derivative
    Wang, Guotao
    Feng, Meihua
    Zhao, Xianghong
    Yuan, Hualei
    [J]. DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [6] Results on Atangana-Baleanu fractional semilinear neutral delay integro-differential systems in Banach space
    Ma, Yong-Ki
    Williams, W. Kavitha
    Vijayakumar, V.
    Nisar, Kottakkaran Sooppy
    Shukla, Anurag
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (06)
  • [7] Discussion on the controllability results for fractional neutral impulsive Atangana-Baleanu delay integro-differential systems
    Williams, W. Kavitha
    Vijayakumar, V.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,
  • [8] Existence of Atangana-Baleanu fractional neutral Volterra integro-differential equations with non-instantaneous impulses
    Williams, W. Kavitha
    Vijayakumar, V.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 182
  • [9] The averaging principle of Atangana-Baleanu fractional stochastic integro-differential systems with delay
    Dhayal, Rajesh
    Zhu, Quanxin
    [J]. JOURNAL OF ANALYSIS, 2024,
  • [10] Nonlocal Hybrid Integro-Differential Equations Involving Atangana-Baleanu Fractional Operators
    Alshammari, Saleh
    Alshammari, Mohammad
    Abdo, Mohammed S.
    [J]. JOURNAL OF MATHEMATICS, 2023, 2023