Discussion on the controllability results for fractional neutral impulsive Atangana-Baleanu delay integro-differential systems

被引:21
|
作者
Williams, W. Kavitha [1 ]
Vijayakumar, V. [1 ]
机构
[1] Vellore Inst Technol, Dept Math, Sch Adv Sci, Vellore 632014, Tamil Nadu, India
关键词
Atangana-Baleanu fractional derivative; controllability; Darbo's fixed point theorem; impulsive system; integro-differential equations; neutral system; APPROXIMATE CONTROLLABILITY; DIFFERENTIAL-EQUATIONS; MITTAG-LEFFLER; EXISTENCE; MODEL; DERIVATIVES;
D O I
10.1002/mma.7754
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This manuscript is mainly focusing on the existence of Atangana-Baleanu semilinear fractional integro-differential equations with noninstantaneous impulses. The outcomes are proved via Darbo's fixed point theorem and their results when combined with the properties of the measure of noncompactness. Finally, we present a theoretical application to support the validity of the study.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Results on Atangana-Baleanu fractional semilinear neutral delay integro-differential systems in Banach space
    Ma, Yong-Ki
    Williams, W. Kavitha
    Vijayakumar, V.
    Nisar, Kottakkaran Sooppy
    Shukla, Anurag
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (06)
  • [2] Controllability analysis for impulsive integro-differential equation via Atangana-Baleanu fractional derivative
    Kaliraj, Kalimuthu
    Thilakraj, Elumalai
    Ravichandran, Chokkalingam
    Sooppy Nisar, Kottakkaran
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,
  • [3] Results on Impulsive Fractional Integro-Differential Equations Involving Atangana-Baleanu Derivative
    Karthikeyan, Kulandhivel
    Ege, Ozgur
    Karthikeyan, Panjayan
    [J]. FILOMAT, 2022, 36 (13) : 4617 - 4627
  • [4] Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators
    Arjunan, M. Mallika
    Hamiaz, A.
    Kavitha, V
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 149
  • [5] A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic integro-differential system with infinite delay
    Dineshkumar, Chendrayan
    Joo, Young Hoon
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 9922 - 9941
  • [6] The averaging principle of Atangana-Baleanu fractional stochastic integro-differential systems with delay
    Dhayal, Rajesh
    Zhu, Quanxin
    [J]. JOURNAL OF ANALYSIS, 2024,
  • [7] Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay
    Aimene, D.
    Baleanu, D.
    Seba, D.
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 128 : 51 - 57
  • [8] Fuzzy fractional delay integro-differential equation with the generalized Atangana-Baleanu fractional derivative
    Wang, Guotao
    Feng, Meihua
    Zhao, Xianghong
    Yuan, Hualei
    [J]. DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [9] Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type
    Vijayaraj, V.
    Ravichandran, C.
    Sawangtong, Panumart
    Nisar, Kottakkaran Sooppy
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 66 : 249 - 255
  • [10] Results on the approximate controllability of Atangana-Baleanu fractional stochastic delay integrodifferential systems
    Johnson, M.
    Vijayakumar, V.
    Nisar, Kottakkaran Sooppy
    Shukla, Anurag
    Botmart, Thongchai
    Ganesh, V
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 62 : 211 - 222