Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type

被引:4
|
作者
Vijayaraj, V. [1 ]
Ravichandran, C. [1 ]
Sawangtong, Panumart [2 ]
Nisar, Kottakkaran Sooppy [3 ]
机构
[1] Kongunadu Arts & Sci Coll, Dept Math, Coimbatore 641029, India
[2] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[3] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
关键词
Fractional calculus; Martelli?s Fixed point theorem; Sobolev type; Inclusion; 2020; MSC; DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.aej.2022.11.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we scrutinise the study of the existence of Sobolev type Atangana-Baleanu fractional integro-differential inclusions in Banach space. The results are gained by using Martelli's fixed point theorem and q-resolvent operators. An example is given for theoretical result.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 4.0/).
引用
收藏
页码:249 / 255
页数:7
相关论文
共 50 条
  • [31] On weighted Atangana-Baleanu fractional operators
    Al-Refai, Mohammed
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [32] Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces
    Al Nuwairan, Muneerah
    Ibrahim, Ahmed Gamal
    [J]. AIMS MATHEMATICS, 2023, 8 (05): : 11752 - 11780
  • [33] Investigation on integro-differential equations with fractional boundary conditions by Atangana-Baleanu-Caputo derivative
    Harisa, Samy A.
    Faried, Nashat
    Vijayaraj, V.
    Ravichandran, C.
    Morsy, Ahmed
    [J]. PLOS ONE, 2024, 19 (05):
  • [34] Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator
    Liu, Xuan
    Arfan, Muhammad
    Rahman, Mati Ur
    Fatima, Bibi
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2023, 26 (01) : 98 - 112
  • [35] Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application
    Sahoo, Soubhagya Kumar
    Jarad, Fahd
    Kodamasingh, Bibhakar
    Kashuri, Artion
    [J]. AIMS MATHEMATICS, 2022, 7 (07): : 12303 - 12321
  • [36] EXISTENCE RESULTS FOR MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS INVOLVING ATANGANA-BALEANU DERIVATIVE
    Abbas, Ahsan
    Mehmood, Nayyar
    Akgul, Ali
    Abdeljawad, Thabet
    Alqudah, Manar A.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (02)
  • [37] EXISTENCE AND UNIQUENESS RESULTS FOR FUZZY BOUNDARY VALUE PROBLEMS OF NONLINEAR DIFFERENTIAL EQUATIONS INVOLVING ATANGANA-BALEANU FRACTIONAL DERIVATIVES
    Zamtain, F.
    Elomari, M.
    Melliani, S.
    EL Mfadel, A.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (02): : 579 - 596
  • [38] STABILITY OF NONLINEAR HYBRID FRACTIONAL DIFFERENTIAL EQUATION WITH ATANGANA-BALEANU OPERATOR
    Britto Jacob, S.
    George Maria, A.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2022, 26 (01): : 1 - 19
  • [39] Stability analysis of Atangana-Baleanu fractional stochastic differential systems with impulses
    Dhayal, Rajesh
    Gomez-Aguilar, J. F.
    Torres-Jimenez, J.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (16) : 3481 - 3495
  • [40] Existence Solution and Controllability of Sobolev Type Delay Nonlinear Fractional Integro-Differential System
    Ahmed, Hamdy M.
    El-Borai, Mahmoud M.
    El-Owaidy, Hassan M.
    Ghanem, Ahmed S.
    [J]. MATHEMATICS, 2019, 7 (01)