Numerical Solution of Fractional-Order Fredholm Integrodifferential Equation in the Sense of Atangana-Baleanu Derivative

被引:6
|
作者
Wang, Jian [1 ]
Kamran [2 ]
Jamal, Ayesha [2 ]
Li, Xuemei [3 ]
机构
[1] Changchun Sci Tech Univ, Dept Basic Educ & Res, Changchun 130000, Peoples R China
[2] Islamia Coll Peshawar, Dept Math, Peshawar, Pakistan
[3] Changchun Sci Tech Univ, Sch Architecture & Civil Engn, Changchun 130000, Peoples R China
关键词
CALCULUS;
D O I
10.1155/2021/6662808
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present article, our aim is to approximate the solution of Fredholm-type integrodifferential equation with Atangana-Baleanu fractional derivative in Caputo sense. For this, we propose a method based on Laplace transform and inverse LT. In our numerical scheme, the given equation is transformed to an algebraic equation by employing the Laplace transform. The reduced equation will be solved in complex plane. Finally, the solution of the given problem is obtained via inverse Laplace transform by representing it as a contour integral. Then, the trapezoidal rule is used to approximate the integral to high accuracy. We have considered linear and nonlinear fractional Fredholm integrodifferential equations to validate our method.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Numerical Analysis of Fractional-Order Parabolic Equation Involving Atangana-Baleanu Derivative
    Alesemi, Meshari
    [J]. SYMMETRY-BASEL, 2023, 15 (01):
  • [2] Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative
    Almalahi, Mohammed A.
    Panchal, Satish K.
    Jarad, Fahd
    Abdo, Mohammed S.
    Shah, Kamal
    Abdeljawad, Thabet
    [J]. AIMS MATHEMATICS, 2022, 7 (09): : 15994 - 16016
  • [3] Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator
    Abu Arqub, Omar
    Maayah, Banan
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 117 : 117 - 124
  • [4] Numerical approximation of fractional burgers equation with Atangana-Baleanu derivative in Caputo sense
    Yadav, Swati
    Pandey, Rajesh K.
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 133
  • [5] Numerical Methods for Fractional-Order Fornberg-Whitham Equations in the Sense of Atangana-Baleanu Derivative
    Iqbal, Naveed
    Yasmin, Humaira
    Ali, Akbar
    Bariq, Abdul
    Al-Sawalha, M. Mossa
    Mohammed, Wael W.
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [7] Mathematical modeling of a novel fractional-order monkeypox model using the Atangana-Baleanu derivative
    Biswas, A. Santanu
    Aslam, B. Humaira
    Tiwari, Pankaj Kumar
    [J]. PHYSICS OF FLUIDS, 2023, 35 (11)
  • [8] Investigation of the l-problem of Moments for Fractional-order Equations with Atangana-Baleanu Derivative
    Postnov, S. S.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (03) : 691 - 696
  • [9] Numerical analysis of fractional coronavirus model with Atangana-Baleanu derivative in Liouville-Caputo sense
    Manish Goyal
    Amit Kumar Saraswat
    Amit Prakash
    [J]. Indian Journal of Physics, 2023, 97 : 147 - 164
  • [10] Numerical analysis of fractional coronavirus model with Atangana-Baleanu derivative in Liouville-Caputo sense
    Goyal, M.
    Saraswat, A. K.
    Prakash, A.
    [J]. INDIAN JOURNAL OF PHYSICS, 2023, 97 (01) : 147 - 164