Multiplexed single-cell morphometry for hematopathology diagnostics

被引:31
|
作者
Tsai, Albert G. [1 ]
Glass, David R. [1 ,2 ]
Juntilla, Marisa [1 ]
Hartmann, Felix J. [1 ]
Oak, Jean S. [1 ]
Fernandez-Pol, Sebastian [1 ]
Ohgami, Robert S. [3 ]
Bendall, Sean C. [1 ,2 ]
机构
[1] Stanford Univ, Dept Pathol, Stanford, CA 94305 USA
[2] Stanford Univ, Immunol Grad Program, Stanford, CA 94305 USA
[3] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94140 USA
基金
瑞士国家科学基金会;
关键词
MASS CYTOMETRY; CLONALITY; STANDARDIZATION; LEUKEMIA; LYMPHOPROLIFERATIONS; MONOCYTES; REVEALS;
D O I
10.1038/s41591-020-0783-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The diagnosis of lymphomas and leukemias requires hematopathologists to integrate microscopically visible cellular morphology with antibody-identified cell surface molecule expression. To merge these into one high-throughput, highly multiplexed, single-cell assay, we quantify cell morphological features by their underlying, antibody-measurable molecular components, which empowers mass cytometers to 'see' like pathologists. When applied to 71 diverse clinical samples, single-cell morphometric profiling reveals robust and distinct patterns of 'morphometric' markers for each major cell type. Individually, lamin B1 highlights acute leukemias, lamin A/C helps distinguish normal from neoplastic mature T cells, and VAMP-7 recapitulates light-cytometric side scatter. Combined with machine learning, morphometric markers form intuitive visualizations of normal and neoplastic cellular distribution and differentiation. When recalibrated for myelomonocytic blast enumeration, this approach is superior to flow cytometry and comparable to expert microscopy, bypassing years of specialized training. The contextualization of traditional surface markers on independent morphometric frameworks permits more sensitive and automated diagnosis of complex hematopoietic diseases. A scalable mass cytometry-based method for morphometrically classifying hematopoietic cells demonstrates diagnostic utility when applied to clinical samples.
引用
收藏
页码:408 / +
页数:26
相关论文
共 50 条
  • [41] On-chip multiplexed single-cell patterning and controllable intracellular delivery
    Zaizai Dong
    Yanli Jiao
    Bingteng Xie
    Yongcun Hao
    Pan Wang
    Yuanyuan Liu
    Junfeng Shi
    Chandani Chitrakar
    Stephen Black
    Yu-Chieh Wang
    L. James Lee
    Mo Li
    Yubo Fan
    Lingqian Chang
    Microsystems & Nanoengineering, 6
  • [42] Multiplex In Situ Tagging Technology for Highly Multiplexed Single-Cell Analysis
    Wang, Jun
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 446A - 446A
  • [43] Multiplexed Single-Cell Rheology Probing Using Surface Acoustic Waves
    Hu, Yi
    Wang, Yulin
    Zhang, Meiru
    Gao, Changkai
    Zhao, Pu
    Zhang, Suyan
    Zan, Zhaoguang
    Li, Dachao
    Fan, Zhenzhen
    SMALL SCIENCE, 2024, 4 (04):
  • [44] On-chip multiplexed single-cell patterning and controllable intracellular delivery
    Dong, Zaizai
    Jiao, Yanli
    Xie, Bingteng
    Hao, Yongcun
    Wang, Pan
    Liu, Yuanyuan
    Shi, Junfeng
    Chitrakar, Chandani
    Black, Stephen
    Wang, Yu-Chieh
    Lee, L. James
    Li, Mo
    Fan, Yubo
    Chang, Lingqian
    MICROSYSTEMS & NANOENGINEERING, 2020, 6 (01)
  • [45] A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution
    Michele Bortolomeazzi
    Lucia Montorsi
    Damjan Temelkovski
    Mohamed Reda Keddar
    Amelia Acha-Sagredo
    Michael J. Pitcher
    Gianluca Basso
    Luigi Laghi
    Manuel Rodriguez-Justo
    Jo Spencer
    Francesca D. Ciccarelli
    Nature Communications, 13
  • [46] Deterministic genetic barcoding for multiplexed behavioral and single-cell transcriptomic studies
    Mendana, Jorge Blanco
    Donovan, Margaret
    O'Brien, Lindsey Gengelbach
    Auch, Benjamin
    Garbe, John
    Gohl, Daryl M.
    ELIFE, 2025, 12
  • [47] Decoding Neuronal Diversification by Multiplexed Single-cell RNA-Seq
    Luginbuhl, Joachim
    Kouno, Tsukasa
    Nakano, Rei
    Chater, Thomas E.
    Sivaraman, Divya M.
    Kishima, Mami
    Roudnicky, Filip
    Carninci, Piero
    Plessy, Charles
    Shin, Jay W.
    STEM CELL REPORTS, 2021, 16 (04): : 810 - 824
  • [48] Multiplexed multimodal single-cell technologies: From observation to perturbation analysis
    Lee, Su-Hyeon
    Park, Junha
    Hwang, Byungjin
    MOLECULES AND CELLS, 2024, 47 (12)
  • [49] Automated assignment of cell identity from single-cell multiplexed imaging and proteomic data
    Geuenich, Michael J.
    Hou, Jinyu
    Lee, Sunyun
    Ayub, Shanza
    Jackson, Hartland W.
    Campbell, Kieran R.
    CELL SYSTEMS, 2021, 12 (12) : 1173 - +
  • [50] Highly Multiplexed Single-Cell In Situ RNA and DNA Analysis by Consecutive Hybridization
    Xiao, Lu
    Liao, Renjie
    Guo, Jia
    MOLECULES, 2020, 25 (21):