Multiplexed single-cell morphometry for hematopathology diagnostics

被引:31
|
作者
Tsai, Albert G. [1 ]
Glass, David R. [1 ,2 ]
Juntilla, Marisa [1 ]
Hartmann, Felix J. [1 ]
Oak, Jean S. [1 ]
Fernandez-Pol, Sebastian [1 ]
Ohgami, Robert S. [3 ]
Bendall, Sean C. [1 ,2 ]
机构
[1] Stanford Univ, Dept Pathol, Stanford, CA 94305 USA
[2] Stanford Univ, Immunol Grad Program, Stanford, CA 94305 USA
[3] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94140 USA
基金
瑞士国家科学基金会;
关键词
MASS CYTOMETRY; CLONALITY; STANDARDIZATION; LEUKEMIA; LYMPHOPROLIFERATIONS; MONOCYTES; REVEALS;
D O I
10.1038/s41591-020-0783-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The diagnosis of lymphomas and leukemias requires hematopathologists to integrate microscopically visible cellular morphology with antibody-identified cell surface molecule expression. To merge these into one high-throughput, highly multiplexed, single-cell assay, we quantify cell morphological features by their underlying, antibody-measurable molecular components, which empowers mass cytometers to 'see' like pathologists. When applied to 71 diverse clinical samples, single-cell morphometric profiling reveals robust and distinct patterns of 'morphometric' markers for each major cell type. Individually, lamin B1 highlights acute leukemias, lamin A/C helps distinguish normal from neoplastic mature T cells, and VAMP-7 recapitulates light-cytometric side scatter. Combined with machine learning, morphometric markers form intuitive visualizations of normal and neoplastic cellular distribution and differentiation. When recalibrated for myelomonocytic blast enumeration, this approach is superior to flow cytometry and comparable to expert microscopy, bypassing years of specialized training. The contextualization of traditional surface markers on independent morphometric frameworks permits more sensitive and automated diagnosis of complex hematopoietic diseases. A scalable mass cytometry-based method for morphometrically classifying hematopoietic cells demonstrates diagnostic utility when applied to clinical samples.
引用
收藏
页码:408 / +
页数:26
相关论文
共 50 条
  • [21] A novel platform for highly multiplexed, single-cell imaging of cell suspensions
    Khan, Anum
    Lee, Won-Mean
    Mulholland, Jon
    Wagh, Dhananjay
    Coller, John
    Mercado, Gabriel
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2019, 7
  • [22] Multiplexed single-cell proteomics using SCoPE2
    Aleksandra A. Petelski
    Edward Emmott
    Andrew Leduc
    R. Gray Huffman
    Harrison Specht
    David H. Perlman
    Nikolai Slavov
    Nature Protocols, 2021, 16 : 5398 - 5425
  • [23] Multiplexed single-cell proteomics using SCoPE2
    Petelski, Aleksandra A.
    Emmott, Edward
    Leduc, Andrew
    Huffman, R. Gray
    Specht, Harrison
    Perlman, David H.
    Slavov, Nikolai
    NATURE PROTOCOLS, 2021, 16 (12) : 5398 - +
  • [24] Multiplexed Ion Beam Imaging Readout of Single-Cell Immunoblotting
    Lomeli, Gabriela
    Bosse, Marc
    Bendall, Sean C.
    Angelo, Michael
    Herr, Amy E.
    ANALYTICAL CHEMISTRY, 2021, 93 (24) : 8517 - 8525
  • [25] Multiplexed laser particles for spatially resolved single-cell analysis
    Sheldon J. J. Kwok
    Nicola Martino
    Paul H. Dannenberg
    Seok-Hyun Yun
    Light: Science & Applications, 8
  • [26] Multiplexed and single-cell detection of microRNA with plasmonic nanoparticle assemblies
    Ghotra, Gurbrinder
    Le, Nguyen H.
    Hayder, Heyam
    Peng, Chun
    Chen, Jennifer I. L.
    CANADIAN JOURNAL OF CHEMISTRY, 2021, 99 (07) : 585 - 593
  • [27] Multiplexed laser particles for spatially resolved single-cell analysis
    Kwok, Sheldon J. J.
    Martino, Nicola
    Dannenberg, Paul H.
    Yun, Seok-Hyun
    LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
  • [28] Multiplexed single-cell in situ RNA analysis by reiterative hybridization
    Xiao, Lu
    Guo, Jia
    ANALYTICAL METHODS, 2015, 7 (17) : 7290 - 7295
  • [29] Single-cell proteomics: potential implications for cancer diagnostics
    Gavasso, Sonia
    Gullaksen, Stein-Erik
    Skavland, Jorn
    Gjertsen, Bjorn T.
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2016, 16 (05) : 579 - 589
  • [30] New methods of single-cell analysis in research and diagnostics
    Geigl, J.
    Speicher, M.
    MEDIZINISCHE GENETIK, 2008, 20 (04): : 407 - 415