Multiplexed single-cell morphometry for hematopathology diagnostics

被引:31
|
作者
Tsai, Albert G. [1 ]
Glass, David R. [1 ,2 ]
Juntilla, Marisa [1 ]
Hartmann, Felix J. [1 ]
Oak, Jean S. [1 ]
Fernandez-Pol, Sebastian [1 ]
Ohgami, Robert S. [3 ]
Bendall, Sean C. [1 ,2 ]
机构
[1] Stanford Univ, Dept Pathol, Stanford, CA 94305 USA
[2] Stanford Univ, Immunol Grad Program, Stanford, CA 94305 USA
[3] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94140 USA
基金
瑞士国家科学基金会;
关键词
MASS CYTOMETRY; CLONALITY; STANDARDIZATION; LEUKEMIA; LYMPHOPROLIFERATIONS; MONOCYTES; REVEALS;
D O I
10.1038/s41591-020-0783-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The diagnosis of lymphomas and leukemias requires hematopathologists to integrate microscopically visible cellular morphology with antibody-identified cell surface molecule expression. To merge these into one high-throughput, highly multiplexed, single-cell assay, we quantify cell morphological features by their underlying, antibody-measurable molecular components, which empowers mass cytometers to 'see' like pathologists. When applied to 71 diverse clinical samples, single-cell morphometric profiling reveals robust and distinct patterns of 'morphometric' markers for each major cell type. Individually, lamin B1 highlights acute leukemias, lamin A/C helps distinguish normal from neoplastic mature T cells, and VAMP-7 recapitulates light-cytometric side scatter. Combined with machine learning, morphometric markers form intuitive visualizations of normal and neoplastic cellular distribution and differentiation. When recalibrated for myelomonocytic blast enumeration, this approach is superior to flow cytometry and comparable to expert microscopy, bypassing years of specialized training. The contextualization of traditional surface markers on independent morphometric frameworks permits more sensitive and automated diagnosis of complex hematopoietic diseases. A scalable mass cytometry-based method for morphometrically classifying hematopoietic cells demonstrates diagnostic utility when applied to clinical samples.
引用
收藏
页码:408 / +
页数:26
相关论文
共 50 条
  • [31] Single-cell pathogen diagnostics for combating antibiotic resistance
    Hui Li
    Kuangwen Hsieh
    Pak Kin Wong
    Kathleen E. Mach
    Joseph C. Liao
    Tza-Huei Wang
    Nature Reviews Methods Primers, 3
  • [32] Single-cell pathogen diagnostics for combating antibiotic resistance
    Li, Hui
    Hsieh, Kuangwen
    Wong, Pak Kin
    Mach, Kathleen E.
    Liao, Joseph C.
    Wang, Tza-Huei
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [33] Single-cell pathogen diagnostics for combating antibiotic resistance
    Nature Reviews Methods Primers, 3 (1):
  • [34] Challenges of single-cell diagnostics: analysis of gene expression
    Todd, R
    Margolin, DH
    TRENDS IN MOLECULAR MEDICINE, 2002, 8 (06) : 254 - 257
  • [35] Multiplexed living cells stained with quantum dot bioprobes for multiplexed detection of single-cell array
    Ren, Dahai
    Xia, Yiqiu
    You, Zheng
    JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (09)
  • [36] Non-invasive single-cell morphometry in living bacterial biofilms
    Mingxing Zhang
    Ji Zhang
    Yibo Wang
    Jie Wang
    Alecia M. Achimovich
    Scott T. Acton
    Andreas Gahlmann
    Nature Communications, 11
  • [37] Non-Invasive Single-Cell Morphometry in Living Bacterial Biofilms
    Zhang, Ji
    Wang, Yibo
    Zhang, Mingxing
    Wang, Jie
    Achimovich, Alecia
    Acton, Scott T.
    Gahlmann, Andreas
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 358A - 358A
  • [38] Non-invasive single-cell morphometry in living bacterial biofilms
    Zhang, Mingxing
    Zhang, Ji
    Wang, Yibo
    Wang, Jie
    Achimovich, Alecia M.
    Acton, Scott T.
    Gahlmann, Andreas
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [39] PDMS Microwell Stencil Based Multiplexed Single-Cell Secretion Analysis
    Liu, Meimei
    Jin, Meihua
    Li, Linmei
    Ji, Yahui
    Zhu, Fengjiao
    Luo, Yong
    Liu, Tingjiao
    Lin, Bingcheng
    Lu, Yao
    PROTEOMICS, 2020, 20 (13)
  • [40] A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution
    Bortolomeazzi, Michele
    Montorsi, Lucia
    Temelkovski, Damjan
    Keddar, Mohamed Reda
    Acha-Sagredo, Amelia
    Pitcher, Michael J.
    Basso, Gianluca
    Laghi, Luigi
    Rodriguez-Justo, Manuel
    Spencer, Jo
    Ciccarelli, Francesca D.
    NATURE COMMUNICATIONS, 2022, 13 (01)