Decoding Neuronal Diversification by Multiplexed Single-cell RNA-Seq

被引:6
|
作者
Luginbuhl, Joachim [1 ,2 ]
Kouno, Tsukasa [1 ,2 ]
Nakano, Rei [1 ,3 ]
Chater, Thomas E. [4 ]
Sivaraman, Divya M. [1 ,2 ,5 ]
Kishima, Mami [1 ,2 ]
Roudnicky, Filip [6 ]
Carninci, Piero [1 ,2 ]
Plessy, Charles [1 ,2 ]
Shin, Jay W. [1 ,2 ]
机构
[1] RIKEN Ctr Integrat Med Sci, Yokohama, Kanagawa 2300045, Japan
[2] RIKEN Ctr Life Sci Technol, Div Genom Technol, Yokohama, Kanagawa 2300045, Japan
[3] Nihon Univ, Coll Bioresource Sci, Lab Vet Radiol, Fujisawa, Kanagawa 2520880, Japan
[4] RIKEN Ctr Brain Sci, Wako, Saitama 3510198, Japan
[5] Sree Chitra Tirunal Inst Med Sci & Technol, Dept Pathol, Thiruvananthapuram 695011, Kerala, India
[6] Swiss Fed Inst Technol, Inst Pharmaceut Sci, CH-8057 Zurich, Switzerland
来源
STEM CELL REPORTS | 2021年 / 16卷 / 04期
基金
日本学术振兴会;
关键词
HUMAN FIBROBLASTS; DIRECT CONVERSION; DOPAMINERGIC-NEURONS; MOUSE; PAX6; GENERATION; NEUROTRANSMITTER; REGULATORS; INDUCTION; SCREEN;
D O I
10.1016/j.stemcr.2021.02.006
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Cellular reprogramming is driven by a defined set of transcription factors; however, the regulatory logic that underlies cell-type specifi-cation and diversification remains elusive. Single-cell RNA-seq provides unprecedented coverage to measure dynamic molecular changes at the single-cell resolution. Here, we multiplex and ectopically express 20 pro-neuronal transcription factors in human dermal fibroblasts and demonstrate a widespread diversification of neurons based on cell morphology and canonical neuronal marker expressions. Single-cell RNA-seq analysis reveals diverse and distinct neuronal subtypes, including reprogramming processes that strongly correlate with the developing brain. Gene mapping of 20 exogenous pro-neuronal transcription factors further unveiled key determinants responsible for neuronal lineage specification and a regulatory logic dictating neuronal diversification, including glutamatergic and cholinergic neurons. The multiplex scRNA-seq approach is a robust and scalable approach to elucidate lineage and cellular specification across various biolog-ical systems.
引用
收藏
页码:810 / 824
页数:15
相关论文
共 50 条
  • [1] CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification
    Hashimshony, Tamar
    Wagner, Florian
    Sher, Noa
    Yanai, Itai
    CELL REPORTS, 2012, 2 (03): : 666 - 673
  • [2] CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq
    Hashimshony, Tamar
    Senderovich, Naftalie
    Avital, Gal
    Klochendler, Agnes
    de Leeuw, Yaron
    Anavy, Leon
    Gennert, Dave
    Li, Shuqiang
    Livak, Kenneth J.
    Rozenblatt-Rosen, Orit
    Dor, Yuval
    Regev, Aviv
    Yanai, Itai
    GENOME BIOLOGY, 2016, 17
  • [3] CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq
    Tamar Hashimshony
    Naftalie Senderovich
    Gal Avital
    Agnes Klochendler
    Yaron de Leeuw
    Leon Anavy
    Dave Gennert
    Shuqiang Li
    Kenneth J. Livak
    Orit Rozenblatt-Rosen
    Yuval Dor
    Aviv Regev
    Itai Yanai
    Genome Biology, 17
  • [4] Decoding the pathogenesis of Diamond–Blackfan anemia using single-cell RNA-seq
    Bingrui Wang
    Chenchen Wang
    Yang Wan
    Jie Gao
    Yige Ma
    Yingnan Zhang
    Jingyuan Tong
    Yingchi Zhang
    Jinhua Liu
    Lixian Chang
    Changlu Xu
    Biao Shen
    Yumei Chen
    Erlie Jiang
    Ryo Kurita
    Yukio Nakamura
    Kim-Chew Lim
    James Douglas Engel
    Jiaxi Zhou
    Tao Cheng
    Xiaofan Zhu
    Ping Zhu
    Lihong Shi
    Cell Discovery, 8
  • [5] Highly multiplexed single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins
    Jase Gehring
    Jong Hwee Park
    Sisi Chen
    Matthew Thomson
    Lior Pachter
    Nature Biotechnology, 2020, 38 : 35 - 38
  • [6] Highly multiplexed single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins
    Gehring, Jase
    Park, Jong Hwee
    Chen, Sisi
    Thomson, Matthew
    Pachter, Lior
    NATURE BIOTECHNOLOGY, 2020, 38 (01) : 35 - +
  • [7] Correlation Imputation for Single-Cell RNA-seq
    Gan, Luqin
    Vinci, Giuseppe
    Allen, Genevera I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (05) : 465 - 482
  • [8] PRECISION AND ACCURACY IN SINGLE-CELL RNA-SEQ
    Dai, Rujia
    Zhang, Ming
    Chu, Tianyao
    Kopp, Richard
    Zhang, Chunling
    Liu, Kefu
    Wang, Yue
    Wang, Xusheng
    Chen, Chao
    Liu, Chunyu
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 21 - 21
  • [9] Single-cell RNA-seq—now with protein
    Vesna Todorovic
    Nature Methods, 2017, 14 : 1028 - 1029
  • [10] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)