Quantile-slicing estimation for dimension reduction in regression

被引:3
|
作者
Kim, Hyungwoo [1 ]
Wu, Yichao [2 ]
Shin, Seung Jun [1 ]
机构
[1] Korea Univ, Dept Stat, 145 Anam Ro, Seoul 02841, South Korea
[2] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
Heteroscedasticity; Kernel quantile regression; Quantile-slicing estimation; Sufficient dimension reduction; PRINCIPAL HESSIAN DIRECTIONS; SLICED INVERSE REGRESSION; CENTRAL SUBSPACE; SELECTION; NUMBER;
D O I
10.1016/j.jspi.2018.03.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sufficient dimension reduction (SDR) has recently received much attention due to its promising performance under less stringent model assumptions. We propose a new class of SDR approaches based on slicing conditional quantiles: quantile-slicing mean estimation (QUME) and quantile-slicing variance estimation (QUVE). Quantile-slicing is particularly useful when the quantile function is more efficient to capture underlying model structure than the response itself, for example, when heteroscedasticity exists in a regression context. Both simulated and real data analysis results demonstrate promising performance of the proposed quantile-slicing SDR estimation methods. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条