Empirical likelihood estimation of the spatial quantile regression

被引:15
|
作者
Kostov, Philip [1 ]
机构
[1] Univ Cent Lancashire, Lancashire Business Sch, Preston PR1 2HE, Lancs, England
关键词
Empirical likelihood; Quantile regression; Spatial data; WEAKLY DEPENDENT PROCESSES; MOMENT CONDITION MODELS; GENERALIZED-METHOD; INFERENCE; SPILLOVERS; PRICES; GMM;
D O I
10.1007/s10109-012-0162-3
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
The spatial quantile regression model is a useful and flexible model for analysis of empirical problems with spatial dimension. This paper introduces an alternative estimator for this model. The properties of the proposed estimator are discussed in a comparative perspective with regard to the other available estimators. Simulation evidence on the small sample properties of the proposed estimator is provided. The proposed estimator is feasible and preferable when the model contains multiple spatial weighting matrices. Furthermore, a version of the proposed estimator based on the exponentially tilted empirical likelihood could be beneficial if model misspecification is suspect.
引用
收藏
页码:51 / 69
页数:19
相关论文
共 50 条
  • [1] Empirical likelihood estimation of the spatial quantile regression
    Philip Kostov
    [J]. Journal of Geographical Systems, 2013, 15 : 51 - 69
  • [2] Conditional empirical likelihood estimation and inference for quantile regression models
    Otsu, Taisuke
    [J]. JOURNAL OF ECONOMETRICS, 2008, 142 (01) : 508 - 538
  • [3] BAYESIAN EMPIRICAL LIKELIHOOD FOR QUANTILE REGRESSION
    Yang, Yunwen
    He, Xuming
    [J]. ANNALS OF STATISTICS, 2012, 40 (02): : 1102 - 1131
  • [4] Small area quantile estimation via spline regression and empirical likelihood
    Chen, Zhanshou
    Chen, Jiahua
    Zhang, Qiong
    [J]. SURVEY METHODOLOGY, 2019, 45 (01) : 81 - 99
  • [5] Conditional empirical likelihood for quantile regression models
    Wu Wang
    Zhongyi Zhu
    [J]. Metrika, 2017, 80 : 1 - 16
  • [6] Conditional empirical likelihood for quantile regression models
    Wang, Wu
    Zhu, Zhongyi
    [J]. METRIKA, 2017, 80 (01) : 1 - 16
  • [7] Empirical likelihood for composite quantile regression modeling
    Zhao P.
    Zhou X.
    Lin L.
    [J]. Journal of Applied Mathematics and Computing, 2015, 48 (1-2) : 321 - 333
  • [8] Smoothed empirical likelihood methods for quantile regression models
    Whang, YJ
    [J]. ECONOMETRIC THEORY, 2006, 22 (02) : 173 - 205
  • [9] Bayesian empirical likelihood of quantile regression with missing observations
    Chang-Sheng Liu
    Han-Ying Liang
    [J]. Metrika, 2023, 86 : 285 - 313
  • [10] Bayesian empirical likelihood of quantile regression with missing observations
    Liu, Chang-Sheng
    Liang, Han-Ying
    [J]. METRIKA, 2023, 86 (03) : 285 - 313