Quantile-slicing estimation for dimension reduction in regression

被引:3
|
作者
Kim, Hyungwoo [1 ]
Wu, Yichao [2 ]
Shin, Seung Jun [1 ]
机构
[1] Korea Univ, Dept Stat, 145 Anam Ro, Seoul 02841, South Korea
[2] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
Heteroscedasticity; Kernel quantile regression; Quantile-slicing estimation; Sufficient dimension reduction; PRINCIPAL HESSIAN DIRECTIONS; SLICED INVERSE REGRESSION; CENTRAL SUBSPACE; SELECTION; NUMBER;
D O I
10.1016/j.jspi.2018.03.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sufficient dimension reduction (SDR) has recently received much attention due to its promising performance under less stringent model assumptions. We propose a new class of SDR approaches based on slicing conditional quantiles: quantile-slicing mean estimation (QUME) and quantile-slicing variance estimation (QUVE). Quantile-slicing is particularly useful when the quantile function is more efficient to capture underlying model structure than the response itself, for example, when heteroscedasticity exists in a regression context. Both simulated and real data analysis results demonstrate promising performance of the proposed quantile-slicing SDR estimation methods. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] Sliced regression for dimension reduction
    Wang, Hansheng
    Xia, Yingcun
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 811 - 821
  • [32] FLEXIBLE DIMENSION REDUCTION IN REGRESSION
    Wang, Tao
    Zhu, Lixing
    STATISTICA SINICA, 2018, 28 (02) : 1009 - 1029
  • [33] On directional regression for dimension reduction
    Li, Bing
    Wang, Shaoli
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) : 997 - 1008
  • [34] Neural networks for quantile claim amount estimation: a quantile regression approach
    Laporta, Alessandro G.
    Levantesi, Susanna
    Petrella, Lea
    ANNALS OF ACTUARIAL SCIENCE, 2024, 18 (01) : 30 - 50
  • [35] Bayesian nonparametric quantile process regression and estimation of marginal quantile effects
    Xu, Steven G.
    Reich, Brian J.
    BIOMETRICS, 2023, 79 (01) : 151 - 164
  • [36] Estimation and test for quantile nonlinear cointegrating regression
    Li, Haiqi
    Zheng, Chaowen
    Guo, Yu
    ECONOMICS LETTERS, 2016, 148 : 27 - 32
  • [37] Efficient Estimation of an Additive Quantile Regression Model
    Cheng, Yebin
    de Gooijer, Jan G.
    Zerom, Dawit
    SCANDINAVIAN JOURNAL OF STATISTICS, 2011, 38 (01) : 46 - 62
  • [38] Composite support vector quantile regression estimation
    Shim, Jooyong
    Hwang, Changha
    Seok, Kyungha
    COMPUTATIONAL STATISTICS, 2014, 29 (06) : 1651 - 1665
  • [39] Robust estimation and regression with parametric quantile functions
    Sottile, Gianluca
    Frumento, Paolo
    Computational Statistics and Data Analysis, 2022, 171
  • [40] Nonlinear quantile regression estimation of longitudinal data
    Karlsson, Andreas
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (01) : 114 - 131