Heteroscedasticity;
Kernel quantile regression;
Quantile-slicing estimation;
Sufficient dimension reduction;
PRINCIPAL HESSIAN DIRECTIONS;
SLICED INVERSE REGRESSION;
CENTRAL SUBSPACE;
SELECTION;
NUMBER;
D O I:
10.1016/j.jspi.2018.03.001
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Sufficient dimension reduction (SDR) has recently received much attention due to its promising performance under less stringent model assumptions. We propose a new class of SDR approaches based on slicing conditional quantiles: quantile-slicing mean estimation (QUME) and quantile-slicing variance estimation (QUVE). Quantile-slicing is particularly useful when the quantile function is more efficient to capture underlying model structure than the response itself, for example, when heteroscedasticity exists in a regression context. Both simulated and real data analysis results demonstrate promising performance of the proposed quantile-slicing SDR estimation methods. (C) 2018 Elsevier B.V. All rights reserved.
机构:
Univ Kent Canterbury, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, EnglandUniv Kent Canterbury, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
Kong, Efang
Xia, Yingcun
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, SingaporeUniv Kent Canterbury, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
Xia, Yingcun
ANNALS OF STATISTICS,
2014,
42
(04):
: 1657
-
1688
机构:
Baruch Coll, New York, NY USA
CUNY, Dept Informat Syst & Stat, Baruch Coll, 55 Lexington Ave & 24th St, New York, NY 10010 USABaruch Coll, New York, NY USA
Lee, Chung Eun
Hilafu, Haileab
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Knoxville, TN 37996 USA
Stokely Management Ctr, Business Analyt & Stat Dept, 916 Volunteer Blvd, Knoxville, TN 37996 USABaruch Coll, New York, NY USA