Quantile-slicing estimation for dimension reduction in regression

被引:3
|
作者
Kim, Hyungwoo [1 ]
Wu, Yichao [2 ]
Shin, Seung Jun [1 ]
机构
[1] Korea Univ, Dept Stat, 145 Anam Ro, Seoul 02841, South Korea
[2] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
Heteroscedasticity; Kernel quantile regression; Quantile-slicing estimation; Sufficient dimension reduction; PRINCIPAL HESSIAN DIRECTIONS; SLICED INVERSE REGRESSION; CENTRAL SUBSPACE; SELECTION; NUMBER;
D O I
10.1016/j.jspi.2018.03.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sufficient dimension reduction (SDR) has recently received much attention due to its promising performance under less stringent model assumptions. We propose a new class of SDR approaches based on slicing conditional quantiles: quantile-slicing mean estimation (QUME) and quantile-slicing variance estimation (QUVE). Quantile-slicing is particularly useful when the quantile function is more efficient to capture underlying model structure than the response itself, for example, when heteroscedasticity exists in a regression context. Both simulated and real data analysis results demonstrate promising performance of the proposed quantile-slicing SDR estimation methods. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] ON COMPARISON OF ESTIMATION METHODS IN QUANTILE REGRESSION
    Woo, Song Jea
    Kang, Kee-Hoon
    ADVANCES AND APPLICATIONS IN STATISTICS, 2018, 52 (03) : 203 - 213
  • [22] Risk Estimation With Composite Quantile Regression
    Christou, Eliana
    Grabchak, Michael
    ECONOMETRICS AND STATISTICS, 2025, 33 : 166 - 179
  • [23] Efficient Estimation for Censored Quantile Regression
    Lee, Sze Ming
    Sit, Tony
    Xu, Gongjun
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2762 - 2775
  • [24] ESTIMATION IN FUNCTIONAL LINEAR QUANTILE REGRESSION
    Kato, Kengo
    ANNALS OF STATISTICS, 2012, 40 (06): : 3108 - 3136
  • [25] Moment estimation for censored quantile regression
    Wang, Qian
    Chen, Songnian
    ECONOMETRIC REVIEWS, 2021, 40 (09) : 815 - 829
  • [26] On expectile-assisted inverse regression estimation for sufficient dimension reduction
    Soale, Abdul-Nasah
    Dong, Yuexiao
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 213 : 80 - 92
  • [27] AN ADAPTIVE COMPOSITE QUANTILE APPROACH TO DIMENSION REDUCTION
    Kong, Efang
    Xia, Yingcun
    ANNALS OF STATISTICS, 2014, 42 (04): : 1657 - 1688
  • [28] QUANTILE MARTINGALE DIFFERENCE DIVERGENCE FOR DIMENSION REDUCTION
    Lee, Chung Eun
    Hilafu, Haileab
    STATISTICA SINICA, 2022, 32 (01) : 65 - 87
  • [29] KERNEL DIMENSION REDUCTION IN REGRESSION
    Fukumizu, Kenji
    Bach, Francis R.
    Jordan, Michael I.
    ANNALS OF STATISTICS, 2009, 37 (04): : 1871 - 1905
  • [30] Dimension Reduction for Frechet Regression
    Zhang, Qi
    Xue, Lingzhou
    Li, Bing
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 2733 - 2747