Dynamics of Droplet Consumption in Vapor-Liquid-Solid III-V Nanowire Growth

被引:12
|
作者
Pishchagin, Anton [1 ]
Glas, Frank [1 ]
Patriarche, Gilles [1 ]
Cattoni, Andrea [1 ,2 ]
Harmand, Jean-Christophe [1 ]
Oehler, Fabrice [1 ]
机构
[1] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, F-91120 Palaiseau, France
[2] Inst Photovolta Ile de France, F-91120 Palaiseau, France
关键词
SELF-CATALYZED GROWTH; GAAS NANOWIRES;
D O I
10.1021/acs.cgd.1c00504
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We study experimentally and theoretically the consumption of the apical gallium droplet that mediates the self-catalyzed vapor-liquid-solid growth of GaP nanowires. Consumption is achieved after growth by providing only phosphorous, and its progress is monitored ex situ in nanowire arrays fabricated by molecular beam epitaxy. We develop detailed calculations of the process, taking into account four channels of liquid gallium consumption. These include the formation of GaP using phosphorous delivered to the droplet by direct impingement or after re-emission from the substrate. We show that two other channels contribute significantly, namely, the diffusion of phosphorous along the sidewalls and gallium back diffusion from the droplet. All currents are calculated analytically as a function of droplet geometry. Complementary experiments are performed to extract the two model parameters governing the diffusion currents. We then numerically compute the dynamics of the system exposed to a constant external phosphorous flux. Our quantitative model allows one to predict how the droplet contact angle and radius change while operating blindly in a standard epitaxy chamber. Controlling these parameters is crucial for tailoring the crystal phase of III-V nanowires and fabricating quantum size structures.
引用
收藏
页码:4647 / 4655
页数:9
相关论文
共 50 条
  • [31] Guiding vapor-liquid-solid nanowire growth using SiO2
    Quitoriano, Nathaniel J.
    Wu, Wei
    Kamins, Theodore I.
    NANOTECHNOLOGY, 2009, 20 (14)
  • [32] Experimental evidence and physical understanding of ZnO vapor-liquid-solid nanowire growth
    Y. H. Yang
    Y. Feng
    G. W. Yang
    Applied Physics A, 2011, 102 : 319 - 323
  • [33] Surface Hydrogen Enables Subeutectic Vapor-Liquid-Solid Semiconductor Nanowire Growth
    Sivaram, Saujan V.
    Hui, Ho Yee
    de la Mata, Maria
    Arbiol, Jordi
    Filler, Michael A.
    NANO LETTERS, 2016, 16 (11) : 6717 - 6723
  • [34] Phase Field Model for Morphological Transition in Nanowire Vapor-Liquid-Solid Growth
    Wang, Yanming
    McIntyre, Paul C.
    Cai, Wei
    CRYSTAL GROWTH & DESIGN, 2017, 17 (04) : 2211 - 2217
  • [35] Silicon nanowire synthesis by a vapor-liquid-solid approach
    Mao, A
    Ng, HT
    Nguyen, P
    McNeil, M
    Meyyappan, M
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (05) : 831 - 835
  • [36] Experimental evidence and physical understanding of ZnO vapor-liquid-solid nanowire growth
    Yang, Y. H.
    Feng, Y.
    Yang, G. W.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (02): : 319 - 323
  • [37] High repetition rate laser ablation for vapor-liquid-solid nanowire growth
    Marcu, A.
    Stokker, F.
    Zamani, R. R.
    Lungu, C. P.
    Grigoriu, C.
    CURRENT APPLIED PHYSICS, 2014, 14 (04) : 614 - 620
  • [38] Doping profiles during nanowire growth via the vapor-liquid-solid mechanism
    Leshchenko, E. D.
    Dubrovskii, V. G.
    4TH INTERNATIONAL SCHOOL AND CONFERENCE ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES (SAINT PETERSBURG OPEN 2017), 2017, 917
  • [39] Controlled faceting in ⟨110⟩ germanium nanowire growth by switching between vapor-liquid-solid and vapor-solid-solid growth
    Kolibal, Miroslav
    Kalousek, Radek
    Vystavel, Tomas
    Novak, Libor
    Sikola, Tomas
    APPLIED PHYSICS LETTERS, 2012, 100 (20)
  • [40] SiC nanowire vapor-liquid-solid growth using vapor-phase catalyst delivery
    Thirumalai, Rooban Venkatesh K. G.
    Krishnan, Bharat
    Davydov, Albert V.
    Merrett, J. Neil
    Koshka, Yaroslav
    JOURNAL OF MATERIALS RESEARCH, 2013, 28 (01) : 50 - 56