Dynamics of Droplet Consumption in Vapor-Liquid-Solid III-V Nanowire Growth

被引:12
|
作者
Pishchagin, Anton [1 ]
Glas, Frank [1 ]
Patriarche, Gilles [1 ]
Cattoni, Andrea [1 ,2 ]
Harmand, Jean-Christophe [1 ]
Oehler, Fabrice [1 ]
机构
[1] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, F-91120 Palaiseau, France
[2] Inst Photovolta Ile de France, F-91120 Palaiseau, France
关键词
SELF-CATALYZED GROWTH; GAAS NANOWIRES;
D O I
10.1021/acs.cgd.1c00504
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We study experimentally and theoretically the consumption of the apical gallium droplet that mediates the self-catalyzed vapor-liquid-solid growth of GaP nanowires. Consumption is achieved after growth by providing only phosphorous, and its progress is monitored ex situ in nanowire arrays fabricated by molecular beam epitaxy. We develop detailed calculations of the process, taking into account four channels of liquid gallium consumption. These include the formation of GaP using phosphorous delivered to the droplet by direct impingement or after re-emission from the substrate. We show that two other channels contribute significantly, namely, the diffusion of phosphorous along the sidewalls and gallium back diffusion from the droplet. All currents are calculated analytically as a function of droplet geometry. Complementary experiments are performed to extract the two model parameters governing the diffusion currents. We then numerically compute the dynamics of the system exposed to a constant external phosphorous flux. Our quantitative model allows one to predict how the droplet contact angle and radius change while operating blindly in a standard epitaxy chamber. Controlling these parameters is crucial for tailoring the crystal phase of III-V nanowires and fabricating quantum size structures.
引用
收藏
页码:4647 / 4655
页数:9
相关论文
共 50 条
  • [41] Limits of III-V Nanowire Growth
    Dubrovskii, V. G.
    Sokolovskii, A. S.
    Hijazi, H.
    TECHNICAL PHYSICS LETTERS, 2020, 46 (09) : 859 - 863
  • [42] Mechanism and control of sidewall growth and catalyst diffusion on oxide nanowire vapor-liquid-solid growth
    Nagashima, Kazuki
    Yanagida, Takeshi
    Oka, Keisuke
    Tanaka, Hidekazu
    Kawai, Tomoji
    APPLIED PHYSICS LETTERS, 2008, 93 (15)
  • [43] A New Method for Vertical Growth of Silicon Nanowire in the Vapor-Liquid-Solid (VLS) Process
    Kim, Y. J.
    Suh, D.
    Lee, M. L.
    Ryu, H. J.
    NANOTECHNOLOGY 2012, VOL 2: ELECTRONICS, DEVICES, FABRICATION, MEMS, FLUIDICS AND COMPUTATIONAL, 2012, : 516 - 519
  • [44] Planar GaAs nanowire tri-gate MOSFETs by vapor-liquid-solid growth
    Zhang, Chen
    Li, Xiuling
    SOLID-STATE ELECTRONICS, 2014, 93 : 40 - 42
  • [45] Growth of III-V nanowires and nanowire heterostructures by metalorganic chemical vapor deposition
    Joyce, Hannah J.
    Kim, Yong
    Gao, Qiang
    Tan, Hark Hoe
    Jagadish, Chennupati
    2007 2ND IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3, 2007, : 285 - +
  • [46] Vapor-Liquid-Solid Growth of <110> Silicon Nanowire Arrays
    Eichfeld, Sarah M.
    Hainey, Mel F., Jr.
    Shen, Haoting
    Kendrick, Chito E.
    Fucinato, Emily A.
    Yim, Joanne
    Black, Marcie R.
    Redwing, Joan M.
    NANOEPITAXY: MATERIALS AND DEVICES V, 2013, 8820
  • [47] Surface energy of monolayer formation during nanowire growth by vapor-liquid-solid mechanism
    V. G. Dubrovskii
    M. V. Nazarenko
    Technical Physics Letters, 2011, 37 : 427 - 430
  • [48] Simultaneous Selective-Area and Vapor-Liquid-Solid Growth of InP Nanowire Arrays
    Gao, Qian
    Dubrovskii, Vladimir G.
    Caroff, Philippe
    Wong-Leung, Jennifer
    Li, Li
    Guo, Yanan
    Fu, Lan
    Tan, Hark Hoe
    Jagadish, Chennupati
    NANO LETTERS, 2016, 16 (07) : 4361 - 4367
  • [49] Surface Energy of Monolayer Formation during Nanowire Growth by Vapor-Liquid-Solid Mechanism
    Dubrovskii, V. G.
    Nazarenko, M. V.
    TECHNICAL PHYSICS LETTERS, 2011, 37 (05) : 427 - 430
  • [50] The effect of Sn addition on GaAs nanowire grown by vapor-liquid-solid growth mechanism
    Gao, Han
    Lysevych, Mykhaylo
    Tan, Hark Hoe
    Jagadish, Chennupati
    Zou, Jin
    NANOTECHNOLOGY, 2018, 29 (46)