Dynamics of Droplet Consumption in Vapor-Liquid-Solid III-V Nanowire Growth

被引:12
|
作者
Pishchagin, Anton [1 ]
Glas, Frank [1 ]
Patriarche, Gilles [1 ]
Cattoni, Andrea [1 ,2 ]
Harmand, Jean-Christophe [1 ]
Oehler, Fabrice [1 ]
机构
[1] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, F-91120 Palaiseau, France
[2] Inst Photovolta Ile de France, F-91120 Palaiseau, France
关键词
SELF-CATALYZED GROWTH; GAAS NANOWIRES;
D O I
10.1021/acs.cgd.1c00504
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We study experimentally and theoretically the consumption of the apical gallium droplet that mediates the self-catalyzed vapor-liquid-solid growth of GaP nanowires. Consumption is achieved after growth by providing only phosphorous, and its progress is monitored ex situ in nanowire arrays fabricated by molecular beam epitaxy. We develop detailed calculations of the process, taking into account four channels of liquid gallium consumption. These include the formation of GaP using phosphorous delivered to the droplet by direct impingement or after re-emission from the substrate. We show that two other channels contribute significantly, namely, the diffusion of phosphorous along the sidewalls and gallium back diffusion from the droplet. All currents are calculated analytically as a function of droplet geometry. Complementary experiments are performed to extract the two model parameters governing the diffusion currents. We then numerically compute the dynamics of the system exposed to a constant external phosphorous flux. Our quantitative model allows one to predict how the droplet contact angle and radius change while operating blindly in a standard epitaxy chamber. Controlling these parameters is crucial for tailoring the crystal phase of III-V nanowires and fabricating quantum size structures.
引用
收藏
页码:4647 / 4655
页数:9
相关论文
共 50 条
  • [21] Growth of CdS nanowire crystals: Vapor-liquid-solid versus vapor-solid mechanisms
    Grynko, D. A.
    Fedoryak, A. N.
    Dimitriev, O. P.
    Lin, A.
    Laghumavarapu, R. B.
    Huffaker, D. L.
    SURFACE & COATINGS TECHNOLOGY, 2013, 230 : 234 - 238
  • [22] Phase-field model of vapor-liquid-solid nanowire growth
    Wang, Nan
    Upmanyu, Moneesh
    Karma, Alain
    PHYSICAL REVIEW MATERIALS, 2018, 2 (03):
  • [23] Step-flow growth of a nanowire in the vapor-liquid-solid and vapor-solid-solid processes
    Golovin, A.A.
    Davis, S.H.
    Voorhees, P.W.
    Journal of Applied Physics, 2008, 104 (07):
  • [24] Atomic-Scale Choreography of Vapor-Liquid-Solid Nanowire Growth
    Ek, Martin
    Filler, Michael A.
    ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (01) : 118 - 126
  • [25] Step-flow growth of a nanowire in the vapor-liquid-solid and vapor-solid-solid processes
    Golovin, A. A.
    Davis, S. H.
    Voorhees, P. W.
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (07)
  • [26] Influence of precursor feeding rate on vapor-liquid-solid nanowire growth
    Yuan, Guangbi
    Liu, Xiaohua
    He, Weidong
    Wang, Dunwei
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 96 (02): : 399 - 402
  • [27] Energetics and kinetics of monolayer formation in vapor-liquid-solid nanowire growth
    Glas, Frank
    Dubrovskii, Vladimir G.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (08)
  • [28] Scenarios of stable Vapor→Liquid Droplet→Solid Nanowire growth
    Nebol'sin, Valery A.
    Dunaev, Alexander I.
    Tatarenkov, Alexander E.
    Shmakova, Svetlana S.
    JOURNAL OF CRYSTAL GROWTH, 2016, 450 : 207 - 214
  • [29] From Droplets to Nanowires: Dynamics of Vapor-Liquid-Solid Growth
    Schwarz, K. W.
    Tersoff, J.
    PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [30] Catalyst-substrate interaction and growth delay in vapor-liquid-solid nanowire growth
    Kolibal, Miroslav
    Pejchal, Tomas
    Musalek, Tomas
    Sikola, Tomas
    NANOTECHNOLOGY, 2018, 29 (20)