Antiferromagnetic spintronics

被引:1816
|
作者
Baltz, V. [1 ]
Manchon, A. [2 ]
Tsoi, M. [3 ]
Moriyama, T. [4 ]
Ono, T. [4 ]
Tserkovnyak, Y. [5 ]
机构
[1] Univ Grenoble Alpes, SPINTEC, CNRS, INAC CEA, F-38000 Grenoble, France
[2] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div PSE, Thuwal 239556900, Saudi Arabia
[3] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[4] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
[5] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
日本学术振兴会;
关键词
SPIN-ORBIT TORQUE; TUNNELING ANISOTROPIC MAGNETORESISTANCE; BOSE-EINSTEIN CONDENSATION; ROOM-TEMPERATURE; EXCHANGE-BIAS; THIN-FILMS; PERPENDICULAR MAGNETIZATION; PHASE-DIAGRAM; LENGTH SCALES; DYNAMICS;
D O I
10.1103/RevModPhys.90.015005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.
引用
收藏
页数:57
相关论文
共 50 条
  • [21] ANTIFERROMAGNETIC SPINTRONICS Improving memory
    Prando, Giacomo
    NATURE NANOTECHNOLOGY, 2017, 12 (02) : 99 - 99
  • [22] Empowering spintronics with antiferromagnetic diodes
    Finocchio, Giovanni
    Tomasello, Riccardo
    Carpentieri, Mario
    NATURE NANOTECHNOLOGY, 2025, 20 (02) : 185 - 186
  • [23] Antiferromagnetic spintronics: An overview and outlook
    Xiong, Danrong
    Jiang, Yuhao
    Shi, Kewen
    Du, Ao
    Yao, Yuxuan
    Guo, Zongxia
    Zhu, Daoqian
    Cao, Kaihua
    Peng, Shouzhong
    Cai, Wenlong
    Zhu, Dapeng
    Zhao, Weisheng
    FUNDAMENTAL RESEARCH, 2022, 2 (04): : 522 - 534
  • [24] The multiple directions of antiferromagnetic spintronics
    T. Jungwirth
    J. Sinova
    A. Manchon
    X. Marti
    J. Wunderlich
    C. Felser
    Nature Physics, 2018, 14 : 200 - 203
  • [25] Antiferromagnetic opto-spintronics
    P. Němec
    M. Fiebig
    T. Kampfrath
    A. V. Kimel
    Nature Physics, 2018, 14 : 229 - 241
  • [26] The multiple directions of antiferromagnetic spintronics
    Jungwirth, T.
    Sinova, J.
    Manchon, A.
    Marti, X.
    Wunderlich, J.
    Felser, C.
    NATURE PHYSICS, 2018, 14 (03) : 200 - 203
  • [27] Emerging materials in antiferromagnetic spintronics
    Baltz, V.
    Hoffmann, A.
    Emori, S.
    Shao, D. -F.
    Jungwirth, T.
    APL MATERIALS, 2024, 12 (03)
  • [28] Antiferromagnetic opto-spintronics
    Nemec, P.
    Fiebig, M.
    Kampfrath, T.
    Kimel, A. V.
    NATURE PHYSICS, 2018, 14 (03) : 229 - 241
  • [29] Perspective on antiferromagnetic iridates for spintronics
    Yang, Junyi
    Zhang, Haiyang
    Zhang, Han
    Hao, Lin
    APL MATERIALS, 2023, 11 (07)
  • [30] Neuromorphic computing with antiferromagnetic spintronics
    Kurenkov, Aleksandr
    Fukami, Shunsuke
    Ohno, Hideo
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (01)