Neuromorphic computing with antiferromagnetic spintronics

被引:47
|
作者
Kurenkov, Aleksandr [1 ,2 ,3 ]
Fukami, Shunsuke [1 ,2 ,3 ,4 ,5 ]
Ohno, Hideo [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tohoku Univ, Ctr Sci & Innovat Spintron, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Ctr Spintron Res Network, Sendai, Miyagi 9808577, Japan
[3] Tohoku Univ, Res Inst Elect Commun, Lab Nanoelect & Spintron, Sendai, Miyagi 9808577, Japan
[4] Tohoku Univ, Ctr Innovat Integrated Elect Syst, Sendai, Miyagi 9800845, Japan
[5] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
关键词
SPIN-ORBIT TORQUE; LARGE-SCALE MODEL; NEURAL-NETWORKS; MAGNETIZATION; CLASSIFICATION; DRIVEN; MEMORY; WAVES;
D O I
10.1063/5.0009482
中图分类号
O59 [应用物理学];
学科分类号
摘要
While artificial intelligence, capable of readily addressing cognitive tasks, has transformed technologies and daily lives, there remains a huge gap with biological systems in terms of performance per energy unit. Neuromorphic computing, in which hardware with alternative architectures, circuits, devices, and/or materials is explored, is expected to reduce the gap. Antiferromagnetic spintronics could offer a promising platform for this scheme. Active functionalities of antiferromagnetic systems have been demonstrated recently and several works indicated their potential for biologically inspired computing. In this perspective, we look through the prism of these works and discuss prospects and challenges of antiferromagnetic spintronics for neuromorphic computing. Overview and discussion are given on non-spiking artificial neural networks, spiking neural networks, and reservoir computing.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Prospect of Spintronics in Neuromorphic Computing
    Zhou, Jing
    Chen, Jingsheng
    [J]. ADVANCED ELECTRONIC MATERIALS, 2021, 7 (09)
  • [2] Spintronics-Based Neuromorphic and Ising Computing
    Bhowmik, Debanjan
    Yadav, Ram Singh
    Garg, Neha
    Holla, Amod
    Muduli, Pranaba K.
    [J]. 8TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM 2024, 2024, : 625 - 627
  • [3] Reliable In-Memory Neuromorphic Computing using Spintronics
    Muench, Christopher
    Bishnoi, Rajendra
    Tahoori, Mehdi B.
    [J]. 24TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC 2019), 2019, : 230 - 236
  • [4] Neuromorphic spintronics
    J. Grollier
    D. Querlioz
    K. Y. Camsari
    K. Everschor-Sitte
    S. Fukami
    M. D. Stiles
    [J]. Nature Electronics, 2020, 3 : 360 - 370
  • [5] Neuromorphic spintronics
    Grollier, J.
    Querlioz, D.
    Camsari, K. Y.
    Everschor-Sitte, K.
    Fukami, S.
    Stiles, M. D.
    [J]. NATURE ELECTRONICS, 2020, 3 (07) : 360 - 370
  • [6] Antiferromagnetic spintronics
    Fukami, Shunsuke
    Lorenz, Virginia O.
    Gomonay, Olena
    [J]. Journal of Applied Physics, 2020, 128 (07):
  • [7] Antiferromagnetic spintronics
    Fukami, Shunsuke
    Lorenz, Virginia O.
    Gomonay, Olena
    [J]. JOURNAL OF APPLIED PHYSICS, 2020, 128 (07)
  • [8] Antiferromagnetic spintronics
    Sinova, Jairo
    Jungwirth, Tomas
    Gomonay, Olena
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (04):
  • [9] Antiferromagnetic spintronics
    Baltz, V.
    Manchon, A.
    Tsoi, M.
    Moriyama, T.
    Ono, T.
    Tserkovnyak, Y.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [10] Antiferromagnetic spintronics
    Jungwirth, T.
    Marti, X.
    Wadley, P.
    Wunderlich, J.
    [J]. NATURE NANOTECHNOLOGY, 2016, 11 (03) : 231 - 241