Variance Analysis for Monte Carlo Integration

被引:38
|
作者
Pilleboue, Adrien [1 ]
Singh, Gurprit [1 ]
Coeurjolly, David [2 ]
Kazhdan, Michael [3 ]
Ostromoukhov, Victor [1 ,2 ]
机构
[1] Univ Lyon 1, F-69622 Villeurbanne, France
[2] CNRS, LIRIS, UMR 5205, Paris, France
[3] Johns Hopkins Univ, Baltimore, MD 21218 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2015年 / 34卷 / 04期
关键词
Stochastic Sampling; Monte Carlo Integration; Fourier Analysis; Spherical Harmonics; Global Illumination; WANG TILES; EQUIDISTRIBUTION; FRAMEWORK;
D O I
10.1145/2766930
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a new spectral analysis of the variance in Monte Carlo integration, expressed in terms of the power spectra of the sampling pattern and the integrand involved. We build our framework in the Euclidean space using Fourier tools and on the sphere using spherical harmonics. We further provide a theoretical background that explains how our spherical framework can be extended to the hemispherical domain. We use our framework to estimate the variance convergence rate of different state-of-the-art sampling patterns in both the Euclidean and spherical domains, as the number of samples increases. Furthermore, we formulate design principles for constructing sampling methods that can be tailored according to available resources. We validate our theoretical framework by performing numerical integration over several integrands sampled using different sampling patterns.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Variance reduction in Monte Carlo capacitance extraction
    Batterywala, SH
    Desai, MP
    18TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS: POWER AWARE DESIGN OF VLSI SYSTEMS, 2005, : 85 - 90
  • [22] Methods for variance reduction in Monte Carlo simulations
    Bixler, Joel N.
    Hokr, Brett H.
    Winblad, Aidan
    Elpers, Gabriel
    Zollars, Byron
    Thomas, Robert J.
    OPTICAL INTERACTIONS WITH TISSUE AND CELLS XXVII, 2016, 9706
  • [23] Variance reduced Monte Carlo methods for PDEs
    Newton, N.J.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 3):
  • [24] Variance reduction for multivariate Monte Carlo simulation
    Wang, Jr-Yan
    JOURNAL OF DERIVATIVES, 2008, 16 (01): : 7 - 28
  • [25] VARIANCE ESTIMATION IN ADAPTIVE SEQUENTIAL MONTE CARLO
    Du, Qiming
    Guyader, Arnaud
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (03): : 1021 - 1060
  • [26] Monte Carlo transition dynamics and variance reduction
    Fitzgerald, M
    Picard, RR
    Silver, RN
    JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (1-2) : 321 - 345
  • [27] Monte carlo variance of scrambled net quadrature
    Margaret Jacks Hall, Stanford University, Stanford, CA 94305, United States
    SIAM J Numer Anal, 5 (1884-1910):
  • [28] Monte Carlo variance of scrambled net quadrature
    Owen, AB
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) : 1884 - 1910
  • [29] Monte Carlo Transition Dynamics and Variance Reduction
    M. Fitzgerald
    R. R. Picard
    R. N. Silver
    Journal of Statistical Physics, 2000, 98 : 321 - 345
  • [30] A variance reducing multiplier for Monte Carlo integrations
    Sobol, IM
    Tutunnikov, AV
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : 87 - 96