Variance reduction in Monte Carlo capacitance extraction

被引:14
|
作者
Batterywala, SH [1 ]
Desai, MP [1 ]
机构
[1] Synopsys India Pvt Ltd, Bangalore 560095, Karnataka, India
关键词
D O I
10.1109/ICVD.2005.169
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this article we address efficiency issues in implementation of Monte Carlo algorithm for 3D capacitance extraction. Error bounds in statistical capacitance estimation are discussed. Methods to tighten them through variance reduction techniques are detailed. Sample values in implementation of Monte Carlo algorithm is completely determined by the first hop in random walk. This in turn facilitates application of variance reduction techniques like importance sampling and stratified sampling to be used effectively. Experimental results indicate average speedup or 16X in simple uniform dielectric technologies, 7.3X in technologies with layers of dielectrics and 4.6X in technologies having conformal dielectrics.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [1] Methods for variance reduction in Monte Carlo simulations
    Bixler, Joel N.
    Hokr, Brett H.
    Winblad, Aidan
    Elpers, Gabriel
    Zollars, Byron
    Thomas, Robert J.
    [J]. OPTICAL INTERACTIONS WITH TISSUE AND CELLS XXVII, 2016, 9706
  • [2] Monte Carlo transition dynamics and variance reduction
    Fitzgerald, M
    Picard, RR
    Silver, RN
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (1-2) : 321 - 345
  • [3] Variance reduction for multivariate Monte Carlo simulation
    Wang, Jr-Yan
    [J]. JOURNAL OF DERIVATIVES, 2008, 16 (01): : 7 - 28
  • [4] Monte Carlo Transition Dynamics and Variance Reduction
    M. Fitzgerald
    R. R. Picard
    R. N. Silver
    [J]. Journal of Statistical Physics, 2000, 98 : 321 - 345
  • [5] Variance Reduction in Monte Carlo Estimators via Empirical Variance Minimization
    D. V. Belomestny
    L. S. Iosipoi
    N. K. Zhivotovskiy
    [J]. Doklady Mathematics, 2018, 98 : 494 - 497
  • [6] Variance Reduction in Monte Carlo Estimators via Empirical Variance Minimization
    Belomestny, D. V.
    Iosipoi, L. S.
    Zhivotovskiy, N. K.
    [J]. DOKLADY MATHEMATICS, 2018, 98 (02) : 494 - 497
  • [7] OPTIMAL VARIANCE REDUCTION FOR MARKOV CHAIN MONTE CARLO
    Huang, Lu-Jing
    Liao, Yin-Ting
    Chen, Ting-Li
    Hwang, Chii-Ruey
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (04) : 2977 - 2996
  • [8] Variance Reduction Monte Carlo methods for wind turbines
    Sichani, M. T.
    Nielsen, S. R. K.
    Thoft-Christensen, P.
    [J]. APPLICATIONS OF STATISTICS AND PROBABILITY IN CIVIL ENGINEERING, 2011, : 141 - 149
  • [9] Monte Carlo variance reduction with deterministic importance functions
    Haghighat, A
    Wagner, JC
    [J]. PROGRESS IN NUCLEAR ENERGY, 2003, 42 (01) : 25 - 53
  • [10] Neural Control Variates for Monte Carlo Variance Reduction
    Wan, Ruosi
    Zhong, Mingjun
    Xiong, Haoyi
    Zhu, Zhanxing
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 533 - 547