Variance Analysis for Monte Carlo Integration

被引:38
|
作者
Pilleboue, Adrien [1 ]
Singh, Gurprit [1 ]
Coeurjolly, David [2 ]
Kazhdan, Michael [3 ]
Ostromoukhov, Victor [1 ,2 ]
机构
[1] Univ Lyon 1, F-69622 Villeurbanne, France
[2] CNRS, LIRIS, UMR 5205, Paris, France
[3] Johns Hopkins Univ, Baltimore, MD 21218 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2015年 / 34卷 / 04期
关键词
Stochastic Sampling; Monte Carlo Integration; Fourier Analysis; Spherical Harmonics; Global Illumination; WANG TILES; EQUIDISTRIBUTION; FRAMEWORK;
D O I
10.1145/2766930
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a new spectral analysis of the variance in Monte Carlo integration, expressed in terms of the power spectra of the sampling pattern and the integrand involved. We build our framework in the Euclidean space using Fourier tools and on the sphere using spherical harmonics. We further provide a theoretical background that explains how our spherical framework can be extended to the hemispherical domain. We use our framework to estimate the variance convergence rate of different state-of-the-art sampling patterns in both the Euclidean and spherical domains, as the number of samples increases. Furthermore, we formulate design principles for constructing sampling methods that can be tailored according to available resources. We validate our theoretical framework by performing numerical integration over several integrands sampled using different sampling patterns.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] MONTE CARLO INTEGRATION OF RATE EQUATIONS
    SCHAAD, LJ
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1963, 85 (22) : 3588 - &
  • [42] Systematic Numbers for Monte Carlo Integration
    Moradi, Mojtaba
    AMBIENT SCIENCE, 2016, 3 (02) : 1 - 3
  • [43] WEIGHTED MONTE-CARLO INTEGRATION
    YAKOWITZ, S
    KRIMMEL, J
    SZIDAROVSZKY, F
    SIAM REVIEW, 1978, 20 (03) : 637 - 637
  • [44] Monte Carlo integration with Markov chain
    Tan, Zhiqiang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (07) : 1967 - 1980
  • [45] Exponential Integration for Hamiltonian Monte Carlo
    Chao, Wei-Lun
    Solomon, Justin
    Michels, Dominik L.
    Sha, Fei
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1142 - 1151
  • [46] Monte Carlo complexity of parametric integration
    Heinrich, S
    Sindambiwe, E
    JOURNAL OF COMPLEXITY, 1999, 15 (03) : 317 - 341
  • [47] The optimal error of Monte Carlo integration
    Mathe, P
    JOURNAL OF COMPLEXITY, 1995, 11 (04) : 394 - 415
  • [48] TRAPEZOIDAL MONTE-CARLO INTEGRATION
    MASRY, E
    CAMBANIS, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (01) : 225 - 246
  • [49] Improving Monte Carlo integration by symmetrization
    Hartung, Tobias
    Jansen, Karl
    Leoevey, Hernan
    Volmer, Julia
    DIVERSITY AND BEAUTY OF APPLIED OPERATOR THEORY, 2018, 268 : 291 - 317
  • [50] WEIGHTED MONTE-CARLO INTEGRATION
    YAKOWITZ, S
    KRIMMEL, JE
    SZIDAROVSZKY, F
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (06) : 1289 - 1300