Variance Analysis for Monte Carlo Integration

被引:38
|
作者
Pilleboue, Adrien [1 ]
Singh, Gurprit [1 ]
Coeurjolly, David [2 ]
Kazhdan, Michael [3 ]
Ostromoukhov, Victor [1 ,2 ]
机构
[1] Univ Lyon 1, F-69622 Villeurbanne, France
[2] CNRS, LIRIS, UMR 5205, Paris, France
[3] Johns Hopkins Univ, Baltimore, MD 21218 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2015年 / 34卷 / 04期
关键词
Stochastic Sampling; Monte Carlo Integration; Fourier Analysis; Spherical Harmonics; Global Illumination; WANG TILES; EQUIDISTRIBUTION; FRAMEWORK;
D O I
10.1145/2766930
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a new spectral analysis of the variance in Monte Carlo integration, expressed in terms of the power spectra of the sampling pattern and the integrand involved. We build our framework in the Euclidean space using Fourier tools and on the sphere using spherical harmonics. We further provide a theoretical background that explains how our spherical framework can be extended to the hemispherical domain. We use our framework to estimate the variance convergence rate of different state-of-the-art sampling patterns in both the Euclidean and spherical domains, as the number of samples increases. Furthermore, we formulate design principles for constructing sampling methods that can be tailored according to available resources. We validate our theoretical framework by performing numerical integration over several integrands sampled using different sampling patterns.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Error analysis of an adaptive Monte Carlo method for numerical integration
    Karaivanova, A
    Dimov, I
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 201 - 213
  • [32] Variance Reduction in Monte Carlo Estimators via Empirical Variance Minimization
    D. V. Belomestny
    L. S. Iosipoi
    N. K. Zhivotovskiy
    Doklady Mathematics, 2018, 98 : 494 - 497
  • [33] Variance Reduction in Monte Carlo Estimators via Empirical Variance Minimization
    Belomestny, D. V.
    Iosipoi, L. S.
    Zhivotovskiy, N. K.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 494 - 497
  • [34] Real variance analysis of Monte Carlo eigenvalue calculation by McCARD for BEAVRS benchmark
    Park, Ho Jin
    Lee, Hyun Chul
    Shim, Hyung Jin
    Cho, Jin Young
    ANNALS OF NUCLEAR ENERGY, 2016, 90 : 205 - 211
  • [35] A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty
    McFarland, John
    DeCarlo, Erin
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 197
  • [36] IRREGULAR DESIGNS AND SEQUENTIAL ANALYSIS OF VARIANCE - SOME MONTE-CARLO RESULTS
    JONES, RDH
    HINKELMA.K
    ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (03): : 1147 - &
  • [37] APPLICATION OF ANALYSIS OF VARIANCE TECHNIQUE TO MONTE-CARLO DATA OF HUMAN REPRODUCTION
    ROY, TK
    VENKATACHARYA, K
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES B, 1971, 33 : 293 - 304
  • [38] Variance Estimation in Monte Carlo Eigenvalue Simulations Using Spectral Analysis Method
    Jin, Lei
    Banerjee, Kaushik
    NUCLEAR SCIENCE AND ENGINEERING, 2018, 191 (03) : 248 - 261
  • [39] Limits of insensitivity in analysis-of-variance to assumption violations: Monte Carlo findings
    Jiang, PJ
    Summey, JH
    Lambert, ZV
    2000 AMA EDUCATORS' PROCEEDINGS - ENHANCING KNOWLEDGE DEVELOPMENT IN MARKETING, 2000, : 159 - 165
  • [40] Monte Carlo and variance reduction methods for structural reliability analysis: A comprehensive review
    Song, Chenxiao
    Kawai, Reiichiro
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 73