Fractional Hadamard and Fejer-Hadamard inequalities for exponentially m-convex function

被引:0
|
作者
Mehmood, Sajid [1 ]
Farid, Ghulam [2 ]
机构
[1] Govt Boys Primary Sch Sherani, Hazro, Attock, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
来源
关键词
Convex functions; exponentially m-convex functions; Hadamard inequality; Fejer-Hadamard inequality; fractional integral operators; Mittag-Leffler function; MITTAG-LEFFLER FUNCTION; HERMITE-HADAMARD;
D O I
10.24193/subbmath.2021.4.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional integral operators play a vital role in the advancement of mathematical inequalities. The aim of this paper is to present the Hadamard and the Fejer-Hadamard inequalities for generalized fractional integral operators containing Mittag-Leffler function. Exponentially m-convexity is utilized to establish these inequalities. By fixing parameters involved in the Mittag-Leffler function Hadamard and the Fejer-Hadamard inequalities for various well known fractional integral operators can be obtained.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条
  • [1] Fractional generalized Hadamard and Fejer-Hadamard inequalities for m-convex functions
    Yang, Xiuzhi
    Farid, G.
    Nazeer, Waqas
    Yussouf, Muhammad
    Chu, Yu-Ming
    Dong, Chunfa
    AIMS MATHEMATICS, 2020, 5 (06): : 6325 - 6340
  • [2] Fractional Hadamard and Fejer-Hadamard Inequalities Associated with Exponentially (s, m)-Convex Functions
    Guo, Shuya
    Chu, Yu-Ming
    Farid, Ghulam
    Mehmood, Sajid
    Nazeer, Waqas
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [3] Generalized Fractional Hadamard and Fejer-Hadamard Inequalities for Generalized Harmonically Convex Functions
    Jung, Chahn Yong
    Yussouf, Muhammad
    Chu, Yu-Ming
    Farid, Ghulam
    Kang, Shin Min
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [4] STUDY ON FRACTIONAL FEJER-HADAMARD TYPE INEQUALITIES ASSOCIATED WITH GENERALIZED EXPONENTIALLY CONVEXITY
    Farid, Ghulam
    Guran, Liliana
    Qiang, Xiaoli
    Yu-Ming Chu
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (04): : 159 - 170
  • [5] On Hadamard and Fejer-Hadamard inequalities for Caputo k-fractional derivatives
    Farid, Ghulam
    Javed, Anum
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2018, 9 (01): : 69 - 81
  • [6] Further generalizations of Hadamard and Fejer-Hadamard fractional inequalities and error estimates
    Rao, Yongsheng
    Yussouf, Muhammad
    Farid, Ghulam
    Pecaric, Josip
    Tlili, Iskander
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [7] (h-m)-convex functions and associated fractional Hadamard and Fejer-Hadamard inequalities via an extended generalized Mittag-Leffler function
    Kang, Shin Min
    Farid, Ghulam
    Nazeer, Waqas
    Mehmood, Sajid
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [8] Hadamard and Fejer-Hadamard Inequalities for (α, h - m) - p-Convex Functions via Riemann-Liouville Fractional Integrals
    Jia, Wenyan
    Yussouf, Muhammad
    Farid, Ghulam
    Khan, Khuram Ali
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [9] Hadamard and Fejer-Hadamard inequalities for extended generalized fractional integrals involving special functions
    Kang, Shin Min
    Farid, Ghulam
    Nazeer, Waqas
    Tariq, Bushra
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [10] (p,h)-Convex Functions Associated with Hadamard and Fejer-Hadamard Inequalities via k-Fractional Integral Operators
    Zhang, Xiujun
    Farid, Ghulam
    Demirel, Ayse Kuebra
    Jung, Chahn Yong
    JOURNAL OF FUNCTION SPACES, 2022, 2022