Fractional Hadamard and Fejer-Hadamard inequalities for exponentially m-convex function

被引:0
|
作者
Mehmood, Sajid [1 ]
Farid, Ghulam [2 ]
机构
[1] Govt Boys Primary Sch Sherani, Hazro, Attock, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
来源
关键词
Convex functions; exponentially m-convex functions; Hadamard inequality; Fejer-Hadamard inequality; fractional integral operators; Mittag-Leffler function; MITTAG-LEFFLER FUNCTION; HERMITE-HADAMARD;
D O I
10.24193/subbmath.2021.4.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional integral operators play a vital role in the advancement of mathematical inequalities. The aim of this paper is to present the Hadamard and the Fejer-Hadamard inequalities for generalized fractional integral operators containing Mittag-Leffler function. Exponentially m-convexity is utilized to establish these inequalities. By fixing parameters involved in the Mittag-Leffler function Hadamard and the Fejer-Hadamard inequalities for various well known fractional integral operators can be obtained.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条
  • [31] k-fractional integral inequalities of Hadamard type for exponentially (s, m)-convex functions
    Rehman, Atiq Ur
    Farid, Ghulam
    Bibi, Sidra
    Jung, Chahn Yong
    Kang, Shin Min
    AIMS MATHEMATICS, 2021, 6 (01): : 882 - 892
  • [32] A Note on Hermite-Hadamard-Fejer Type Inequalities for Functions Whose n-th Derivatives Are m-Convex or (a,m)-Convex Functions
    Kovac, Sanja
    AXIOMS, 2022, 11 (01)
  • [33] Some Hermite-Hadamard type inequalities for (P, m)-function and quasi m-convex functions
    Kadakal, Mahir
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2020, 10 (01): : 78 - 84
  • [34] Hermite-Hadamard Type Inequalities Obtained via Fractional Integral for Differentiable m-Convex and (alpha,m)-Convex Functions
    Set, Erhan
    Karatas, Suleyman Sami
    Khan, Muhammad Adil
    INTERNATIONAL JOURNAL OF ANALYSIS, 2016,
  • [35] Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for p-convex functions via conformable fractional integrals
    Naila Mehreen
    Matloob Anwar
    Journal of Inequalities and Applications, 2020
  • [36] A Generalized Fejer-Hadamard Inequality for Harmonically Convex Functions via Generalized Fractional Integral Operator and Related Results
    Kang, Shin Min
    Abbas, Ghulam
    Farid, Ghulam
    Nazeer, Waqas
    MATHEMATICS, 2018, 6 (07):
  • [37] Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals
    Iscan, Imdat
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 355 - 366
  • [38] Some inequalities associated with the Hermite-Hadamard-Fejer type for convex function
    Sarikaya, Mehmet Zeki
    Yaldiz, Hatice
    Erden, Samet
    MATHEMATICAL SCIENCES, 2014, 8 (04) : 117 - 124
  • [39] Hermite-Hadamard-Fejer type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function
    Latif, Muhammad Amer
    Kalsoom, Humaira
    Khan, Zareen A.
    AIMS MATHEMATICS, 2022, 7 (03): : 4176 - 4198
  • [40] k-Fractional Integral Inequalities Of Hadamard Type For Strongly Exponentially (α, h - m)-Convex Functions
    Rathour, Laxmi
    Rehman, Atiq Ur
    Bibi, Sidra
    Farid, Ghulam
    Mishra, Lakshmi Narayan
    Mishra, Vishnu Narayan
    APPLIED MATHEMATICS E-NOTES, 2023, 23 : 393 - 411