Fractional Hadamard and Fejer-Hadamard inequalities for exponentially m-convex function

被引:0
|
作者
Mehmood, Sajid [1 ]
Farid, Ghulam [2 ]
机构
[1] Govt Boys Primary Sch Sherani, Hazro, Attock, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
来源
关键词
Convex functions; exponentially m-convex functions; Hadamard inequality; Fejer-Hadamard inequality; fractional integral operators; Mittag-Leffler function; MITTAG-LEFFLER FUNCTION; HERMITE-HADAMARD;
D O I
10.24193/subbmath.2021.4.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional integral operators play a vital role in the advancement of mathematical inequalities. The aim of this paper is to present the Hadamard and the Fejer-Hadamard inequalities for generalized fractional integral operators containing Mittag-Leffler function. Exponentially m-convexity is utilized to establish these inequalities. By fixing parameters involved in the Mittag-Leffler function Hadamard and the Fejer-Hadamard inequalities for various well known fractional integral operators can be obtained.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条
  • [41] Hadamard-Type k-Fractional Integral Inequalities for Exponentially (α, h - m)-Convex Functions
    Jung, Chahn Yong
    Farid, Ghulam
    Bibi, Sidra
    Nisar, Kottakkaran Sooppy
    Kang, Shin Min
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [42] SOME NEW HADAMARD TYPE INEQUALITIES FOR CO-ORDINATED m-CONVEX AND (α, m)-CONVEX FUNCTIONS
    Ozdemir, M. Emin
    Set, Erhan
    Sarikaya, Mehmet Zeki
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (02): : 219 - 229
  • [43] NEW INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR OPERATOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS
    Wang, Shuhong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (04) : 744 - 753
  • [44] Fractional Hermite-Hadamard-Fejer Inequalities for a Convex Function with Respect to an Increasing Function Involving a Positive Weighted Symmetric Function
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Kashuri, Artion
    SYMMETRY-BASEL, 2020, 12 (09):
  • [45] On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals
    Set, Erhan
    Iscan, Imdat
    Sarikaya, M. Zeki
    Ozdemir, M. Emin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 875 - 881
  • [46] Fractional Version of Hermite-Hadamard and Fejer Type Inequalities for a Generalized Class of Convex Functions
    Geng, Lei
    Saleem, Muhammad Shoaib
    Aslam, Kiran Naseem
    Bano, Rahat
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [47] Hadamard and Fejer type inequalities for p-convex functions via Caputo fractional derivatives
    Mehreen, Naila
    Anwar, Matloob
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 253 - 266
  • [48] Hermite-Hadamard-Fejer Type Inequalities for s-Convex Function in the Second Sense via Fractional Integrals
    Set, Erhan
    Iscan, Imdat
    Kara, Hasan Huseyin
    FILOMAT, 2016, 30 (12) : 3131 - 3138
  • [49] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals
    Chen, Hua
    Katugampola, Udita N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1274 - 1291
  • [50] Fractional Hermite-Hadamard inequalities for (α,m)-logarithmically convex functions
    Jianhua Deng
    JinRong Wang
    Journal of Inequalities and Applications, 2013