Generalized Fractional Hadamard and Fejer-Hadamard Inequalities for Generalized Harmonically Convex Functions

被引:2
|
作者
Jung, Chahn Yong [1 ]
Yussouf, Muhammad [2 ]
Chu, Yu-Ming [3 ,4 ]
Farid, Ghulam [5 ]
Kang, Shin Min [6 ]
机构
[1] Gyeongsang Natl Univ, Dept Business Adm, Jinju 52828, South Korea
[2] Univ Sargodha, Dept Math, Sargodha, Pakistan
[3] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[4] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
[5] COMSATS Univ Islamabad, Dept Math, Attock, Pakistan
[6] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
基金
中国国家自然科学基金;
关键词
HERMITE-HADAMARD; INTEGRAL-INEQUALITIES;
D O I
10.1155/2020/8245324
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define a new function, namely, harmonically (a, h - m)-convex function, which unifies various kinds of harmonically convex functions. Generalized versions of the Hadamard and the Fejer-Hadamard fractional integral inequalities for harmonically (alpha, h - m)-convex functions via generalized fractional integral operators are proved. From presented results, a series of fractional integral inequalities can be obtained for harmonically convex, harmonically (h - m)-convex, harmonically (alpha, m)-convex, and related functions and for already known fractional integral operators.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fractional generalized Hadamard and Fejer-Hadamard inequalities for m-convex functions
    Yang, Xiuzhi
    Farid, G.
    Nazeer, Waqas
    Yussouf, Muhammad
    Chu, Yu-Ming
    Dong, Chunfa
    [J]. AIMS MATHEMATICS, 2020, 5 (06): : 6325 - 6340
  • [2] New generalized fractional versions of Hadamard and Fejer inequalities for harmonically convex functions
    Qiang, Xiaoli
    Farid, Ghulam
    Yussouf, Muhammad
    Khan, Khuram Ali
    Rahman, Atiq Ur
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [3] A Generalized Fejer-Hadamard Inequality for Harmonically Convex Functions via Generalized Fractional Integral Operator and Related Results
    Kang, Shin Min
    Abbas, Ghulam
    Farid, Ghulam
    Nazeer, Waqas
    [J]. MATHEMATICS, 2018, 6 (07):
  • [4] Hadamard and Fejer-Hadamard inequalities for extended generalized fractional integrals involving special functions
    Kang, Shin Min
    Farid, Ghulam
    Nazeer, Waqas
    Tariq, Bushra
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [5] Hadamard and Fejer-Hadamard Inequalities for Further Generalized Fractional Integrals Involving Mittag-Leffler Functions
    Yussouf, M.
    Farid, G.
    Khan, K. A.
    Jung, Chahn Yong
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [6] Fractional Hadamard and Fejer-Hadamard Inequalities Associated with Exponentially (s, m)-Convex Functions
    Guo, Shuya
    Chu, Yu-Ming
    Farid, Ghulam
    Mehmood, Sajid
    Nazeer, Waqas
    [J]. JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [7] New Generalized Riemann-Liouville Fractional Integral Versions of Hadamard and Fejer-Hadamard Inequalities
    Nonlaopon, Kamsing
    Farid, Ghulam
    Nosheen, Ammara
    Yussouf, Muhammad
    Bonyah, Ebenezer
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [8] HADAMARD AND FEJER-HADAMARD TYPE INEQUALITIES FOR CONVEX AND RELATIVE CONVEX FUNCTIONS VIA AN EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION
    Farid, Ghulam
    Mishra, Vishnu Narayan
    Mehmood, Sajid
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (05): : 892 - 903
  • [9] Fractional Hadamard and Fejer-Hadamard inequalities for exponentially m-convex function
    Mehmood, Sajid
    Farid, Ghulam
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (04): : 629 - 640
  • [10] Generalized fractional integral inequalities of Hermite–Hadamard type for harmonically convex functions
    Dafang Zhao
    Muhammad Aamir Ali
    Artion Kashuri
    Hüseyin Budak
    [J]. Advances in Difference Equations, 2020