Fractional Hadamard and Fejer-Hadamard Inequalities Associated with Exponentially (s, m)-Convex Functions

被引:23
|
作者
Guo, Shuya [1 ]
Chu, Yu-Ming [2 ,3 ]
Farid, Ghulam [4 ]
Mehmood, Sajid [5 ]
Nazeer, Waqas [6 ]
机构
[1] Chongqing Univ Arts & Sci, Sch Math & Big Data, Chongqing 402160, Peoples R China
[2] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[3] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
[4] COMSATS Univ Islamabad, Dept Math, Attock Campus, Islamabad, Pakistan
[5] Govt Boys Primary Sch Sherani, Hazro, Attock, Pakistan
[6] GC Univ Lahore, Dept Math, Lahore, Pakistan
基金
中国国家自然科学基金;
关键词
M-CONVEX FUNCTIONS; HERMITE-HADAMARD; INTEGRALS;
D O I
10.1155/2020/2410385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to present the fractional Hadamard and Fejer-Hadamard inequalities for exponentially (s, m)-convex functions. To establish these inequalities, we will utilize generalized fractional integral operators containing the Mittag-Leffler function in their kernels via a monotone function. The presented results in particular contain a number of fractional Hadamard and Fejer-Hadamard inequalities for s-convex, m-convex, (s, m)-convex, exponentially convex, exponentially s-convex, and convex functions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Fractional Hadamard and Fejer-Hadamard inequalities for exponentially m-convex function
    Mehmood, Sajid
    Farid, Ghulam
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (04): : 629 - 640
  • [2] Fractional generalized Hadamard and Fejer-Hadamard inequalities for m-convex functions
    Yang, Xiuzhi
    Farid, G.
    Nazeer, Waqas
    Yussouf, Muhammad
    Chu, Yu-Ming
    Dong, Chunfa
    [J]. AIMS MATHEMATICS, 2020, 5 (06): : 6325 - 6340
  • [3] Generalized Fractional Hadamard and Fejer-Hadamard Inequalities for Generalized Harmonically Convex Functions
    Jung, Chahn Yong
    Yussouf, Muhammad
    Chu, Yu-Ming
    Farid, Ghulam
    Kang, Shin Min
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020
  • [4] STUDY ON FRACTIONAL FEJER-HADAMARD TYPE INEQUALITIES ASSOCIATED WITH GENERALIZED EXPONENTIALLY CONVEXITY
    Farid, Ghulam
    Guran, Liliana
    Qiang, Xiaoli
    Yu-Ming Chu
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (04): : 159 - 170
  • [5] (p,h)-Convex Functions Associated with Hadamard and Fejer-Hadamard Inequalities via k-Fractional Integral Operators
    Zhang, Xiujun
    Farid, Ghulam
    Demirel, Ayse Kuebra
    Jung, Chahn Yong
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [6] Hadamard and Fejer-Hadamard inequalities for extended generalized fractional integrals involving special functions
    Kang, Shin Min
    Farid, Ghulam
    Nazeer, Waqas
    Tariq, Bushra
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [7] Hadamard and Fejer-Hadamard Inequalities for (α, h - m) - p-Convex Functions via Riemann-Liouville Fractional Integrals
    Jia, Wenyan
    Yussouf, Muhammad
    Farid, Ghulam
    Khan, Khuram Ali
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [8] (h-m)-convex functions and associated fractional Hadamard and Fejer-Hadamard inequalities via an extended generalized Mittag-Leffler function
    Kang, Shin Min
    Farid, Ghulam
    Nazeer, Waqas
    Mehmood, Sajid
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [9] On Hadamard and Fejer-Hadamard inequalities for Caputo k-fractional derivatives
    Farid, Ghulam
    Javed, Anum
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2018, 9 (01): : 69 - 81
  • [10] Further generalizations of Hadamard and Fejer-Hadamard fractional inequalities and error estimates
    Rao, Yongsheng
    Yussouf, Muhammad
    Farid, Ghulam
    Pecaric, Josip
    Tlili, Iskander
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)