On multiply connected wandering domains of meromorphic functions

被引:14
|
作者
Rippon, P. J. [1 ]
Stallard, G. M. [1 ]
机构
[1] Open Univ, Dept Math, Milton Keynes MK7 6AA, Bucks, England
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2008年 / 77卷
关键词
D O I
10.1112/jlms/jdm118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe conditions under which a multiply connected wandering domain of a transcendental meromorphic function with a finite number of poles must be a Baker wandering domain, and we discuss the possible eventual connectivity of Fatou components of transcendental meromorphic functions. We also show that if f is meromorphic, U is a bounded component of F(f) and V is the component of F(f) such that f (U) subset of V, then f maps each component of partial derivative U onto a component of the boundary of V in (C) over cap. We give examples which show that our results are sharp; for example, we prove that a multiply connected wandering domain can map to a simply connected wandering domain, and vice versa.
引用
收藏
页码:405 / 423
页数:19
相关论文
共 50 条
  • [41] Classifying simply connected wandering domains
    Anna Miriam Benini
    Vasiliki Evdoridou
    Núria Fagella
    Philip J. Rippon
    Gwyneth M. Stallard
    Mathematische Annalen, 2022, 383 : 1127 - 1178
  • [42] On the geometry of simply connected wandering domains
    Thaler, Luka Boc
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (06) : 1663 - 1673
  • [43] Oscillating simply connected wandering domains
    Evdoridou, Vasiliki
    Rippon, Philip J.
    Stallard, Gwyneth M.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (04) : 1239 - 1268
  • [44] Conformal mappings of multiply connected domains onto canonical domains using the Green and Neumann functions
    Bourchtein, Ludmila
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (06) : 821 - 836
  • [45] Classifying simply connected wandering domains
    Benini, Anna Miriam
    Evdoridou, Vasiliki
    Fagella, Nuria
    Rippon, Philip J.
    Stallard, Gwyneth M.
    MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1127 - 1178
  • [46] Baker domains of meromorphic functions
    Rippon, P. J.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 : 1225 - 1233
  • [48] HELMHOLTZ DECOMPOSITION ON MULTIPLY CONNECTED DOMAINS
    DIERIECK, C
    CROWET, F
    PHILIPS JOURNAL OF RESEARCH, 1984, 39 (4-5) : 242 - 253
  • [49] THE DIRICHLET PROBLEM FOR MULTIPLY CONNECTED DOMAINS
    REYNOLDS, RR
    JOURNAL OF MATHEMATICS AND PHYSICS, 1951, 30 (02): : 11 - 22
  • [50] EXTREMAL PROBLEM ON MULTIPLY CONNECTED DOMAINS
    DAVIS, DB
    LOWENTHA.F
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A112 - A112