Classifying simply connected wandering domains

被引:10
|
作者
Benini, Anna Miriam [1 ]
Evdoridou, Vasiliki [2 ]
Fagella, Nuria [3 ]
Rippon, Philip J. [2 ]
Stallard, Gwyneth M. [2 ]
机构
[1] Univ Parma, Dept Math Phys & Comp Sci, Parma, Italy
[2] Open Univ, Sch Math & Stat, Milton Keynes, Bucks, England
[3] Univ Barcelona, Dept Matemat & Informat, Barcelona, Spain
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
ITERATION; EXAMPLES; DYNAMICS;
D O I
10.1007/s00208-021-02252-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
While the dynamics of transcendental entire functions in periodic Fatou components and in multiply connected wandering domains are well understood, the dynamics in simply connected wandering domains have so far eluded classification. We give a detailed classification of the dynamics in such wandering domains in terms of the hyperbolic distances between iterates and also in terms of the behaviour of orbits in relation to the boundaries of the wandering domains. In establishing these classifications, we obtain new results of wider interest concerning non-autonomous forward dynamical systems of holomorphic self maps of the unit disk. We also develop a new general technique for constructing examples of bounded, simply connected wandering domains with prescribed internal dynamics, and a criterion to ensure that the resulting boundaries are Jordan curves. Using this technique, based on approximation theory, we show that all of the nine possible types of simply connected wandering domain resulting from our classifications are indeed realizable. [GRAPHICS] .
引用
收藏
页码:1127 / 1178
页数:52
相关论文
共 50 条
  • [1] Classifying simply connected wandering domains
    Anna Miriam Benini
    Vasiliki Evdoridou
    Núria Fagella
    Philip J. Rippon
    Gwyneth M. Stallard
    [J]. Mathematische Annalen, 2022, 383 : 1127 - 1178
  • [2] Oscillating simply connected wandering domains
    Evdoridou, Vasiliki
    Rippon, Philip J.
    Stallard, Gwyneth M.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (04) : 1239 - 1268
  • [3] On the geometry of simply connected wandering domains
    Thaler, Luka Boc
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (06) : 1663 - 1673
  • [4] An Entire Function with Simply and Multiply Connected Wandering Domains
    Bergweiler, Walter
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (01) : 107 - 120
  • [5] Carleson measures on simply connected domains
    Gonzalez, Maria J.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (02)
  • [6] Conformal Invariants in Simply Connected Domains
    Nasser, Mohamed M. S.
    Vuorinen, Matti
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (3-4) : 747 - 775
  • [7] Bergman projection on simply connected domains
    Taskinen, J
    [J]. RECENT PROGRESS IN FUNCTIONAL ANALYSIS, 2001, 189 : 255 - 261
  • [8] Conformal Invariants in Simply Connected Domains
    Mohamed M. S. Nasser
    Matti Vuorinen
    [J]. Computational Methods and Function Theory, 2020, 20 : 747 - 775
  • [9] On multiply connected wandering domains of meromorphic functions
    Rippon, P. J.
    Stallard, G. M.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 : 405 - 423
  • [10] Multiply connected wandering domains of entire functions
    Bergweiler, Walter
    Rippon, Philip J.
    Stallard, Gwyneth M.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 1261 - 1301