Classifying simply connected wandering domains

被引:10
|
作者
Benini, Anna Miriam [1 ]
Evdoridou, Vasiliki [2 ]
Fagella, Nuria [3 ]
Rippon, Philip J. [2 ]
Stallard, Gwyneth M. [2 ]
机构
[1] Univ Parma, Dept Math Phys & Comp Sci, Parma, Italy
[2] Open Univ, Sch Math & Stat, Milton Keynes, Bucks, England
[3] Univ Barcelona, Dept Matemat & Informat, Barcelona, Spain
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
ITERATION; EXAMPLES; DYNAMICS;
D O I
10.1007/s00208-021-02252-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
While the dynamics of transcendental entire functions in periodic Fatou components and in multiply connected wandering domains are well understood, the dynamics in simply connected wandering domains have so far eluded classification. We give a detailed classification of the dynamics in such wandering domains in terms of the hyperbolic distances between iterates and also in terms of the behaviour of orbits in relation to the boundaries of the wandering domains. In establishing these classifications, we obtain new results of wider interest concerning non-autonomous forward dynamical systems of holomorphic self maps of the unit disk. We also develop a new general technique for constructing examples of bounded, simply connected wandering domains with prescribed internal dynamics, and a criterion to ensure that the resulting boundaries are Jordan curves. Using this technique, based on approximation theory, we show that all of the nine possible types of simply connected wandering domain resulting from our classifications are indeed realizable. [GRAPHICS] .
引用
收藏
页码:1127 / 1178
页数:52
相关论文
共 50 条
  • [21] A Characterization of Orthogonal Convergence in Simply Connected Domains
    Bracci, Filippo
    Contreras, Manuel D.
    Diaz-Madrigal, Santiago
    Gaussier, Herve
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (04) : 3160 - 3175
  • [22] A Characterization of Orthogonal Convergence in Simply Connected Domains
    Filippo Bracci
    Manuel D. Contreras
    Santiago Díaz-Madrigal
    Hervé Gaussier
    [J]. The Journal of Geometric Analysis, 2019, 29 : 3160 - 3175
  • [23] The dual of a bergman space on simply connected domains
    Håkan Hedenmalm
    [J]. Journal d’Analyse Mathématique, 2002, 88 : 311 - 335
  • [24] HOLDER CONDITIONS AND THE TOPOLOGY OF SIMPLY CONNECTED DOMAINS
    AHARONOV, D
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1983, 26 (02): : 189 - 191
  • [25] On the Bohr Radius for Simply Connected Plane Domains
    Fournier, Richard
    Ruscheweyh, Stephan
    [J]. HILBERT SPACES OF ANALYTIC FUNCTIONS, 2010, 51 : 165 - 171
  • [27] Unramified cohomology of classifying varieties for classical simply connected groups
    Merkurjev, A
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2002, 35 (03): : 445 - 476
  • [28] ON CONNECTED PREIMAGES OF SIMPLY-CONNECTED DOMAINS UNDER ENTIRE FUNCTIONS
    Rempe-Gillen, Lasse
    Sixsmith, Dave
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2019, 29 (05) : 1579 - 1615
  • [29] On Connected Preimages of Simply-Connected Domains Under Entire Functions
    Lasse Rempe-Gillen
    Dave Sixsmith
    [J]. Geometric and Functional Analysis, 2019, 29 : 1579 - 1615
  • [30] Permutable entire functions and multiply connected wandering domains
    Benini, Anna Miriam
    Rippon, Philip J.
    Stallard, Gwyneth M.
    [J]. ADVANCES IN MATHEMATICS, 2016, 287 : 451 - 462