HOLDER CONDITIONS AND THE TOPOLOGY OF SIMPLY CONNECTED DOMAINS

被引:1
|
作者
AHARONOV, D
机构
关键词
D O I
10.4153/CMB-1983-030-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:189 / 191
页数:3
相关论文
共 50 条
  • [1] Classifying simply connected wandering domains
    Anna Miriam Benini
    Vasiliki Evdoridou
    Núria Fagella
    Philip J. Rippon
    Gwyneth M. Stallard
    [J]. Mathematische Annalen, 2022, 383 : 1127 - 1178
  • [2] Conformal Invariants in Simply Connected Domains
    Nasser, Mohamed M. S.
    Vuorinen, Matti
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (3-4) : 747 - 775
  • [3] Oscillating simply connected wandering domains
    Evdoridou, Vasiliki
    Rippon, Philip J.
    Stallard, Gwyneth M.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (04) : 1239 - 1268
  • [4] Classifying simply connected wandering domains
    Benini, Anna Miriam
    Evdoridou, Vasiliki
    Fagella, Nuria
    Rippon, Philip J.
    Stallard, Gwyneth M.
    [J]. MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1127 - 1178
  • [5] Carleson measures on simply connected domains
    Gonzalez, Maria J.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (02)
  • [6] Conformal Invariants in Simply Connected Domains
    Mohamed M. S. Nasser
    Matti Vuorinen
    [J]. Computational Methods and Function Theory, 2020, 20 : 747 - 775
  • [7] Bergman projection on simply connected domains
    Taskinen, J
    [J]. RECENT PROGRESS IN FUNCTIONAL ANALYSIS, 2001, 189 : 255 - 261
  • [8] On the geometry of simply connected wandering domains
    Thaler, Luka Boc
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (06) : 1663 - 1673
  • [9] MINKOWSKI SPACE WITH ORDER TOPOLOGY IS SIMPLY CONNECTED
    NANDA, S
    PANDA, HK
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1975, 12 (06) : 393 - 399
  • [10] Universal Taylor Series in Simply Connected Domains
    Christos Kariofillis
    Vassili Nestoridis
    [J]. Computational Methods and Function Theory, 2006, 6 (2) : 437 - 446