Classifying simply connected wandering domains

被引:0
|
作者
Anna Miriam Benini
Vasiliki Evdoridou
Núria Fagella
Philip J. Rippon
Gwyneth M. Stallard
机构
[1] Università di Parma,Department of Mathematical, Physical and Computer Sciences
[2] The Open University,School of Mathematics and Statistics
[3] Universitat de Barcelona,Dep. de Matemàtiques i Informàtica
来源
Mathematische Annalen | 2022年 / 383卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
While the dynamics of transcendental entire functions in periodic Fatou components and in multiply connected wandering domains are well understood, the dynamics in simply connected wandering domains have so far eluded classification. We give a detailed classification of the dynamics in such wandering domains in terms of the hyperbolic distances between iterates and also in terms of the behaviour of orbits in relation to the boundaries of the wandering domains. In establishing these classifications, we obtain new results of wider interest concerning non-autonomous forward dynamical systems of holomorphic self maps of the unit disk. We also develop a new general technique for constructing examples of bounded, simply connected wandering domains with prescribed internal dynamics, and a criterion to ensure that the resulting boundaries are Jordan curves. Using this technique, based on approximation theory, we show that all of the nine possible types of simply connected wandering domain resulting from our classifications are indeed realizable.
引用
收藏
页码:1127 / 1178
页数:51
相关论文
共 50 条
  • [1] Classifying simply connected wandering domains
    Benini, Anna Miriam
    Evdoridou, Vasiliki
    Fagella, Nuria
    Rippon, Philip J.
    Stallard, Gwyneth M.
    [J]. MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1127 - 1178
  • [2] Oscillating simply connected wandering domains
    Evdoridou, Vasiliki
    Rippon, Philip J.
    Stallard, Gwyneth M.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (04) : 1239 - 1268
  • [3] On the geometry of simply connected wandering domains
    Thaler, Luka Boc
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (06) : 1663 - 1673
  • [4] An Entire Function with Simply and Multiply Connected Wandering Domains
    Bergweiler, Walter
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (01) : 107 - 120
  • [5] Conformal Invariants in Simply Connected Domains
    Nasser, Mohamed M. S.
    Vuorinen, Matti
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (3-4) : 747 - 775
  • [6] Carleson measures on simply connected domains
    Gonzalez, Maria J.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (02)
  • [7] Conformal Invariants in Simply Connected Domains
    Mohamed M. S. Nasser
    Matti Vuorinen
    [J]. Computational Methods and Function Theory, 2020, 20 : 747 - 775
  • [8] Bergman projection on simply connected domains
    Taskinen, J
    [J]. RECENT PROGRESS IN FUNCTIONAL ANALYSIS, 2001, 189 : 255 - 261
  • [9] On multiply connected wandering domains of meromorphic functions
    Rippon, P. J.
    Stallard, G. M.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 : 405 - 423
  • [10] Multiply connected wandering domains of entire functions
    Bergweiler, Walter
    Rippon, Philip J.
    Stallard, Gwyneth M.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 1261 - 1301